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Montréal, H3C 3A7, Québec, Canada

Abstract

Multiscale thermodynamics is a theory of relations among levels of
investigation of complex systems. It includes the classical equilibrium
thermodynamics as a special case but it is applicable to both static and
time evolving processes in externally and internally driven macroscopic
systems that are far from equilibrium and are investigated on microscopic,
mesoscopic, and macroscopic levels. In this paper we formulate the mul-
tiscale thermodynamics, explain its origin, and illustrate it in mesoscopic
dynamics that combines levels.

1 Introduction

A level of investigation is a collection of results of certain type of experimental
observations (different for different levels) made on complex systems together
with a theory that allows to organize them, to reproduce them, and to make
predictions. The theory, based on the insight inspired by the experimental data
and by investigating relations to nearby levels involving less or more details,
offers also an understanding of the physics involved. For instance, the equi-
librium level with the energy E, number of moles N, and volume V serving
as state variables [I] and the microscopic level with position and momenta of
~ 1023 particles composing the macroscopic system serving as state variable are
examples of two different autonomous levels of description. The latter is more
microscopic (it takes into account more details) than the former. We call the
latter level an upper level and the former a lower level.

Multiscale thermodynamics is a theory of relations among different levels.

Hamilton’s mechanics, classical thermodynamics, fluid mechanics, Boltz-
mann’s kinetic theory, Gibbs’ equilibrium statistical mechanics, and extensive
studies of relations among them provide methods, tools, and also an inspiration
to formulate a multiscale thermodynamics of which all these classical investi-
gations are particular realizations. The multiscale thermodynamics provides a
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framework for investigating static and dynamic aspects of reductions from an
upper to a lower level with no constrains to the closeness to equilibrium or to
the absence of external or internal forces.

Our objective in this paper is to formulate the multiscale thermodynamics
as a passage upper level — lower level, (in Sections[2 and [3)), to present classical
investigations of mesoscopic dynamics through the eyes of the multiscale ther-
modynamics (in Section[), and to demonstrate its application in the mesoscopic
dynamics in which levels are combined (in Section [H).

2 Structures in Multiscale Thermodynamics

Let £, £ and [ be three autonomous levels. The level £ involves more details
than the level £ that in turn involves more details than the level I. We shall call
the levels involving more details upper levels or also more microscopic levels,
the levels involving less details are called lower levels or also more macroscopic
levels. We investigate the chain

— L —L—]— (1)

where — represents reduction in which unimportant details are ignored and
important overall features emerge. In the diagram (), the way up (i.e. towards
more microscopic levels) is to the left and the way down (i.e. towards more
macroscopic levels) is to the right. The level £ in the diagram has two structures,
one is reduced structure arising in the reduction £ — £ and the other is the
reducing structure arising in the reduction £ — [. Every structure, both
reduced and reducing, consists of a thermodynamic relation and a vector field.
The former generates the geometry and the latter the time evolution. Both
depend on the other level that is involved in the reduction (i.e. on the level £ in
the case of the reduced structure and on the level [ in the case of the reducing
structure. Every mesoscopic level £ that has neighbours on both the left and the
right sides in the chain () has thus a reduced and a reducing thermodynamic
relations and a reduced and reducing vector fields. In general, all the reduced
structures will depend on the choice of the level on its left side (i.e. the level
from which it is reduced) and the reducing structures on the choice of the level
on its right side (i.e. the level to which it is reducing).

The passages upper level — lower level representing the reduction process
can be mathematically formulated in two ways, one called a time-evolution pas-
sage and the other a maximum entropy passage (in short, MazEnt passage).
The former is a mathematical formulation of the time evolution process that
prepares the macroscopic systems under investigation for experimental observa-
tions on the lower level. The latter is a map transforming initial states on the
level £ into the final states by following the preparation process to its conclu-
sion. In other words, the latter is a property of solutions of the time evolution
equations introduced in the former.

If the focus of the investigation of the relations between the levels £ and [
is put on the rates of the processes involved rather than on the processes them-



selves then the resulting passages and structures form what we call multiscale
rate thermodynamics. The two passages: time-evolution passage and MaxEnt
passage become in the rate thermodynamics rate time-evolution passage and
maximum rate-entropy passage that we write as MaxRent passage. The struc-
tures become reducing and reduced rate structures.

Altogether, the level £ in the chain ([IJ) is equipped with many structures
depending on the levels with which it is compared. The reduction represented
by — has two versions: time-evolution and MaxEnt. Moreover, if the vector
fields rather than state spaces are compared then the reducing and reduced
structures become reducing and reduced rate structures and the total number
of structures doubles. All the structures are not however independent We shall
see some of the dependencies below in this paper.

Before proceeding to the actual formulation of the structure and the passages
we emphasize that the term ”reduction” has in this paper the same meaning as
”emergence”. Some details on the upper level are lost in the reduction from an
upper level to a lower level but at the same time an emerging overall pattern
is gained. The process of reduction, as well as the processes conducive to an
emergence of overall features (pattern-recognition processes), involve both a loss
and a gain. The lower level is inferior to the upper level in the amount of details
but superior in the ability to display overall patterns.

2.1 Time-evolution Passage

We begin by formulating the reducing structure on a level £ that is being com-
pared with a lower level [. Both levels £ and [ are assumed to be well established
and autonomous. This means that the macroscopic systems whose behavior are
found to be well described on both levels can be prepared for the level I. The
time evolution describing the preparation process is the reducing time evolu-
tion taking place on L. For example, if the level [ is the equilibrium level, the
preparation process consists of leaving the macroscopic systems free of external
influences and internal constraints sufficiently long time (see more in Section
ET).

Investigations of many pairs of levels (£,]) (see more in Section M) revealed
the following structure of the reducing time evolution. Let x denote the state
variable (for instance x is the one particle distribution function in kinetic theory)
used on the level £. The vector field generating the reducing time evolution on
the level £ is a sum of two terms, one is the Hamiltonian vector field and
the other gradient vector field. The former is an inheritance of the mechanics
seen on the microscopic level and the latter drives trajectories (i.e. solutions
of the governing equations) towards the time evolution on the level I. Both
the Hamiltonian and the gradient parts of the vector fields are gradients of a
potential (i.e. co-vectors) transformed into vectors by a geometrical structure.
In the Hamiltonian part the potential is the energy and the geometrical structure
the Poisson structure (in the simplest case a skewsymmetric matrix). In the
gradient part the potential is the entropy and the geometrical structure is the
metric structure (in the simplest case a symmetric matrix). Both geometrical



structures are degenerate in order to guarantee the conservation of energy and
the increase of entropy. Comments concerning the provenance of the reducing
time evolution are in Section A1l

We now proceed to the mathematical formulation. The quantities charac-
terizing states are denoted by x on the upper level and y on the lower level. All
other quantities belonging to the upper level are denoted with the upper index
1 and to the lower level with the upper index |. The state space on the upper
level is denoted MT (i.e. * € MT ) and the state space on the lower level M+
(i.e. y € M*. A special notation is used for the equilibrium level; the state
variables are (E, N), where E is the energy per unit volume and N the number
of particles per unit volume, the state space is M(°? (i.e. (E,N) € M(9). We
use a shorthand notation for derivatives: A, = g—f, where A : MT — R and
8% is an appropriate functional derivative in the case when MT is an infinite
dimensional space.

We begin the mathematical formulation of the reducing structure on the
level £ with the equilibrium level playing the role of the level [ with which we
are comparing the level £. First, we need a map

M — M©D; g (ET(z), NT(2)) (2)

The time evolution taking place in the process of preparing the macroscopic sys-
tem under investigation for the equilibrium level (the reducing time evolution)
brings € MT to MT(€® c M7 that is in one-to-one relation to the equilibrium
state space M(¢9. Our goal now is to identify the reducing time evolution.
First, we turn to the Hamiltonian part, then to the gradient part, and finally
we combine them.

2.1.1 Hamiltonian time evolution

The Hamiltonian part of the time evolution is governed by [2]
i=L"E] (3)
The operator LT is a Poisson bivector which means that the bracket defined by
{A,B}' =< A,,L"B, > (4)

is a Poisson bracket (i.e. {4, B}T = —{B, A}" and the Jacobi identity
{AAB,C}"}! + {B,{C, A}"}T + {C,{A, B}"}T = 0 holds), A4, B,C are suffi-
ciently regular real valued functions of x € M1 and <, > denote the pairing in
the space MT. From the physical point of view, the bivector LT expresses math-
ematically the kinematics of the chosen state variable 2 € MT. For example,
if x = (r,v), where r is the position coordinate and v the momentum of one
particle, then LT = < _01 (1) > expressing mathematically the cotanget budle
structure of MT. Other examples are in Section Bl

We note that the energy ET(z) is conserved in the time evolution governed

by @) since ET = {ET,ET} = 0. In order to conserve other potentials in



the time evolution (3]), the Poisson bivector LT has to be degenerate. We say
that CT(z) is a Casimir of the Poisson bracket {A, B}' if {A,C}T = 0 VA.
Consequently, CT = {CT,ET} = 0 We require that the Poisson bivector LT
arising in the Hamiltonian part () of the reducing time evolution is degenerate
with the number of moles NT(x) in () and the entropy S'(z) introduced below
in the gradient part of the reducing time evolution are its Casimirs.

2.1.2 Gradient time evolution

The Hamiltonian dynamics ([B]) can be transformed into a reducing dynamics by
making the following three-step reduction: (Step 1) All trajectories are found
(i.e. all solutions of (@) passing through all z € MT for a family of ET(z) is
found. The collection of all such trajectories is called a phase portrait. (Step 2)
A pattern is extracted in the phase portrait. (Step 3) The pattern is interpreted
as a phase portrait of the dynamics on the lower level . Let us assume that
the above three steps have been made. The result is expressed in the reducing
time evolution. By following it to its conclusion we arrive on the level [ (i.e. in
the context of this section, on the equilibrium level). The equation governing
the reducing time evolution is (B modified by including a seed of dissipation.
The dissipation makes to disappear unimportant details (this is the loss in the
reduction) and makes to emerge the pattern (this is the gain in the reduction).
How to formulate the dissipation?

The most significant contribution of the classical thermodynamics is the
MaxEnt principle (see more in Section ). The pattern is revealed and unim-
portant details discarded by maximizing a new potential ST(z) called a reducing
entropy. The role of the new potential ST(x) in mechanics is to reveal some over-
all features of solutions to its governing equations. It is thus a potential that
feels already some overall features of solutions and feeds them back to the initial
upper vector field (see more in Section FT]).

When reaching the lower level, the reducing entropy becomes, on the lower
level, the reduced entropy S*(y), where y is the state variable used on the lower
level. In particular, if the lower level is the equilibrium level then S*(E, N) is
the classical equilibrium entropy.

The simplest time evolution making the entropy ST(x) to grow is the gradient
dynamics [3], [

i=ATS] (5)

where AT is the positive definite operator. Indeed, (&) implies
ST =< SIATSI >>0 (6)

where <, > denotes the pairing in M.
A straightforward generalization of (@) is a dissipation-potential gradient
dynamics

= [E;(:Z:;X)} (7)

m*:S£



where =1, called a dissipation potential [5], is a real valued function of (z, X)
such that:

i) "T(x 0)=0
i) 2" reaches its minimum at X =0

zm) 1s convex in a neighborhood of X =0

(
(
(
(iv) X is a linear function of ©* such that

<z*,Ep >=a< X,Zx >, wherea >0 (8)

The right hand side of (@) becomes the same as the right hand side of (&) when
X =2" and ' = ; < X,ATX >. Regarding the requirement (iv) in (§),
we note that it is, of course, satisfied for X = z*. In the case of = being a
field (i.e. a function of the position coordinate r) then the property (iv) is
for example satisfied for X = Va* provided the boundary condition guarantee
the disappearance of integrals over the boundary. An example illustrating the
requirement (iv) in the case when (x = one particle distribution function) is
presented in Section [I1]in ({I).

A real valued function €(x) for which X(€l) = 0 are called gradient
Casimirs. They are conserved (due to the property (iv) in (8)) in the dissipation-
potential gradient time evolution ().

The inequality (@) becomes

St =< 5! { Az )} >=a[< X*,Ex- >],._g1 >>0 (9)

z*=5]
where the equality holds for the dissipation equilibrium states
MIeD) = [ e M@l @) = o} (10)
The upper thermodynamic potential ®' is given by
T (z;¢*) = —ST(z)+ < ¢, &M (2) > (11)

and €* can be seen as being Lagrange multipliers since (I0) can be read as
maximization of the entropy ST(x) subjected to constraints €'(z).

If the thermodynamic potential ®(z;€*) is convex then the inequality (@)
malkes it possible to consider ®'(z; €*) as a Lyapunov function for the approach
(as t — 00) of solutions to (@) to MT(ded),

The size of the manifold MT(@€9) makes it also possible to give a meaning
to the strength of dissipation. We say that the dissipation generated by a
dlss1pat10n potentlal 21 is weaker than the dissipation generated by =) if
Mde)l 5 Aq(dea)2  The weakest dissipation is, of course, no dissipation when
Mded) = prT

2.1.3 GENERIC time evolution

We now combine the seed of dissipation (fl) with the Hamiltonian time evolu-
tion (@) in a way that essential features of mechanics (in particular the energy



conservation) and also of the gradient dynamics (in particular the growth of the
entropy) are preserved. Both from the physical and the mathematical point of
view, the combination can be best argued in the setting of the contact geometry
that we present in Section 23] below. Here we introduce the combined dynamics
in the form

&= L'ED + [EZ*L*:sT (12)

that is called GENERIC (its provenance is recalled in Section H]). Solutions to
([@2) are required to satisfy the following properties:

EY =0
Nt =0
st> 0 (13)

The first two conservations (conservations of the energy and of the number of
moles) are dictated by mechanics. In ([I2]) we are modifying the Hamiltonian
mechanics @) by adding dissipation but the essence of mechanics must remain
intact. The modification is made in order to bring to light overall features of
solutions to ([B]). The modified Hamilton equation (I2]) represents still mechanics.
The total energy and the total mass conservations are essential to mechanics.
The last inequality in ([I3) (the entropy inequality) is a new feature, brought
about by the modification, that is fundamental for revealing the overall features
(for proving that solutions to (I2]) approach equilibrium states).

Before proceeding to the proof, we note that (I3 are guaranteed if both the
Poisson and the gradient structures are degenerate in the sense that

N'(z),S"(2) are Casimirs
N'(z), E'(z) are gradient Casimirs (14)

The proof of the approach to equilibrium begins with introducing an upper
reducing thermodynamic potential

&' (2; E*,N*) = —ST(2) + E*E"(z) + N*NT(x) (15)

where E* € R and N* € R. If we use the notation established in the equilibrium
thermodynamics, £* = % and N* = —£&, where T is the equilibrium tempera-
ture and p the equilibrium chemical potential. We want to prove that solutions
to (I2) approach, as t — oo equilibrium states &(E*, N*) that are minima of
([I3), i.e. that are solutions to

®l =0 (16)

We thus want to prove that solutions to ([2) approach the manifold
M) = [z e MT|®T =0} (17)

composed of the equilibrium states Z.

We proceed now to recall main steps in the proof. If NT(z), ET(x) is a
complete set of gradient Casimirs then the upper reducing thermodynamic po-
tential (3] is the same as the gradient thermodynamic potential ([[I). Since



(due to ([I4))) the Hamiltonian time evolution implies T = 0, the upper reduc-
ing thermodynamic potential (IH) plays the role of the Lyapunov function for
the approach to dissipation equilibrium states M@ = MT(€D) that are the
same as the equilibrium states. In this case the inequality in the third equation
is sharp, the thermodynamic potential plays the role of the Lyapunov function
(provided ®7 is a convex function of z ) and indeed, the equilibrium manifold
(@@ is approached as t — oo.

If however the gradient part of (IZ) has a larger set of gradient Casimirs
than NT(x), ET(z) (i.e. if the dissipation is weaker) then the gradient part of
([@2) drives solutions to

MTed) — £ ¢ MTHEL]z*:s;(z) =0} (18)

For example (see more in Section [T]), in the Boltzmann kinetic theory the set
MT1dea) i composed of local Maxwell distribution functions and M€ of total
Maxwell distribution functions. The inequality ®1 < 0 does not suffice to prove
the approach to the manifold of equilibrium states MT(¢9). What is needed in
addition is to prove that in the course of the time evolution solutions to (2]
never touch M€ Only at the final destination the solution to (IZ) settles
on both MT1(@9) and MT(€D . This phenomenon was started to be investigated
by Grad [6]. A complete and rigorous mathematical proof for the Boltzmann
equation has earned Cedric Villani Fields Medal [7]. We shall refer to the
enhancement of dissipation arising in the combined gradient and Hamiltonian
dynamics Grad-Villani dissipation enhancement. It is very likely an important
mechanism in the onset of dissipation. Only a seed (a nucleus) of dissipation can
trigger the passage from an upper level to a lower level expressed mathematically
in the reducing time evolution.

Finally, we sum up the input and the output of the reducing time evolution
to the equilibrium level. The input consists of the reducing thermodynamic
relation

N = N ()
E = E'()
S = SM(x) (19)

which, if inserted into (IZ)), implies that the manifold MT(¢? given in (I7) is
approached as t — oo and no time evolution takes place on the equilibrium
level, i.e.

{LTEJE + [EZ] T] =0 (20)

¥ =5z | pt(ea)

The two potentials (ET(x), NT(z)) have been introduced in @) and ST(z) in
). All three arise either from a detailed experimental investigation of the
preparation process for the equilibrium (by trying to express it mathematically)

or from a pattern recognition process in the microscopic phase portrait (see the
beginning of Section [ZT.2]).



The equilibrium thermodynamic relation

N = N
EFE = FE
S = S(E,N) (21)

is the output of the reduction. It is obtained from ([I9) by following the time
evolution governed by (I2)) to its conclusion (see more in Section 2:2]).

2.2 MaxEnt Passage

Investigations of the process of preparation for the equilibrium level (i.e. inves-
tigations of solutions to the upper reducing time evolution equation (I2)) in Sec-
tion 2 T3lled us to the reducing thermodynamic relation (I9). We have seen that
solutions to (IZ) approach, as t — oo, equilibrium states &#(E*, N*) € MT(e)
that are minima of the upper thermodynamic potential (I3 ( i.e. &(E*, N*)
are solutions to (I6).

We now take this result of investigations of the process of preparation for the
equilibrium level as our starting point and make the passage to the equilibrium
level without an explicit reference to the preparation process itself. We thus
begin with the reducing thermodynamic relation ([9) and with the MaxEnt
principle. Our objective is to pass to the equilibrium level and arrive at the
equilibrium thermodynamic relation ([B82]) implied by (I9). The passage [32) —
([) is a mapping that, as we shall see below, is a reducing Legendre transfor-
mation. The same mapping is made in Section but by following the time
evolution governed by (IZ). The maximization of the entropy ST(z) subjected
to constraints ET(x), NT(z), postulated in this section (MaxEnt principle) is in
Section a consequence of the reducing time evolution governed by (2.
Also the reducing thermodynamic relation (I9) has arisen in Section 2Z1.3] from
an analysis of the process of preparation for the equilibrium level. In this section
where we do not consider the preparation process we have to either postulate it
or obtain it by using arguments based on various interpretations of the entropy
(e.g. its relation to the measure of information) that were developed mainly in
the context of the Gibbs equilibrium statistical mechanics (i.e. in investigations
made on the microscopic level) or in the stochastic approach to thermodynamics.

The equilibrium thermodynamic relation S*(E*, N*) implied by ([[9) is

S*(E",N*) = @1 (2(E", N*); B*, N*) (22)
where Z(E*, N*) is an equilibrium state (i.e. a solution to (I@])). The equilib-

rium thermodynamic relation S = S(E, N) is then obtained by the Legendre
transformation. This means that

S(E,N) = &*(E*(E,N), N*(E,N); E, N) (23)

where ®*(E*, N*; E, N) = —S*(E*, N*)+ E*E+N*N and (E*(E, N), N*(E, N))
is a solution to ®%. = 0,®%. = 0. Summing up, the equilibrium thermody-
namic relation S = S(E,N) is obtained from the reducing thermodynamic



relation (I9)) by two mappings
(8"(2), B (x), NT(2)) = (S*(E*,N*), E*,N*) = (S(E,N),E,N)  (24)

where the first mapping is the reducing Legendre transformation (22 and the
second mapping is the Legendre transformation (23]). We call (24) Maximum
Entropy principle (MaxEnt principle).

We now comment about the physical interpretation of the quantities E*
and N*. They appear on both the upper level in the thermodynamic potential
®" (see ([[H)) and on the equilibrium level in the equilibrium thermodynamic
potential ®(E, N; E* N*) = —-S(E,N)+ E*E + N*N.

On the equilibrium level the quantities E* and N* are the conjugate vari-
ables to E and N respectively since the following relations hold: E* = Sg(E, N)
and N* = Sy(E,N). They play a very important role in the equilibrium ther-
modynamics since they can be easily measured. The measurement of E* (and
consequently of the temperature T since £* = %) is made possible by the ubig-
uity in the nature of membranes which either pass freely or block completely
the internal energy E. If a macroscopic system is put into the contact in which
the internal energy freely passes with a thermometer (which is another macro-
scopic system) and both the system and the thermometer are surrounded by the
membrane that blocks the passage of the internal energy then, due to the max-
imization of the entropy in the established equilibrium states, the temperature
of the system becomes the same as the temperature of the thermometer. The
temperature of the thermometer is then made visible through a known relation
between the temperature and another state variable of the thermometer (e.g.
volume or pressure) that can be directly observed. The existence of membranes
that freely pass or block the passage of the mass then similarly makes possible
to measure N*. Moreover, since E* = Sg > 0, there is a one-to-one relation be-
tween the equilibrium thermodynamics formulated in terms of (S(E,N), E, N)
and (E(S,N), S, N). Using the terminology of Callen []], the former formula-
tion is called an entropy representation and the latter an energy representation
of the equilibrium thermodynamics.

On the upper level the quantities (E*, N*) play only the role of the Lagrange
multipliers in the maximization of the reducing entropy ST(z). They are not
anymore conjugate variables and they cannot be simply measured on the upper
level. This is the well known problem with the definition and measurements
of the temperature on mesoscopic levels (including the levels used in direct
numerical simulation).

The observations that we just made about (E*, N*) are also related to the
relation between the entropy representation (in which (F, N) are independent
state variables) and the energy representation (in which (S, N) are independent
state variables) in the classical equilibrium thermodynamics (see [§]). Due to
the positivity of the absolute temperature T = (Sg(FE, N))~!, these two rep-
resentations are interchangeable in the classical equilibrium thermodynamics.
The equilibrium fundamental thermodynamics relation can be given either in
the form B2) or in the form (N = N, E = E(S,N),S = S). This exchange-
ability of entropy and energy representations extends to fluid mechanics (with
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fields of mass, energy and momentum playing the role of state variables) only
under the local equilibrium assumption accorging to which the entropy field (i.e.
the local entropy) is the same function of the mass and the energy fields as in
equilibrium and thus the field of the temperature (i.e. the local temperature)
is positive. In the context of a general mesoscopic level with state variables z,
the upper reducing thermodynamic relation has only one form (I9). There are
no energy and entropy representations.

It is also interesting to note the difference in the inclusion of constraints in
the maximization of the reducing entropy ST(x) made in the MaxEnt principle
and in the maximization of the same entropy made by following the reducing
time evolution. While the former is made simply by the method of Lagrange
multipliers the latter, as we have seen in Section 2.1.3] is made by requiring
degeneracies of the geometrical structures involved in the vector fields and by
proving the Grad-Villani dissipation enhancement.

Still continuing with the comparison of the MaxEnt reduction (in this sec-
tion) and the reduction made in the reducing time evolution (in Section 2213
we look more closely into the role of Legendre transformations. We have al-
ready noted that the MaxEnt reduction ([24)) is a sequence of two Legendre
transformations. The first one is a reducing Legendre transformation and the
second is a regular Legendre transformation. A natural question is as to whether
the reducing time evolution is in fact also a sequence (an infinite sequence) of
(infinitesimal) Legendre transformations. We answer this question in the next
section.

2.3 Contact Geometry

Having realized that the fundamental group of thermodynamics is the group
of Legendre transformations, we ask the question of what is the mathematical
environment in which the Legendre transformations appear as natural transfor-
mations. The geometrical structure that is preserved in the Legendre transfor-
mations is the contact structure [2], [9]. We can thus suggest that the contact
geometry provides a natural mathematical environment for thermodynamics.
For the classical equilibrium thermodynamics this suggestion was made in [10],
[11] and for the multiscale thermodynamics in [I2]. In this section we only
discuss the physical aspects of the contact-geometry formulation of thermody-
namics. Its mathematical background can be found in [2], [9].

The time evolution governed by (I2]) will be a sequence of Legendre trans-
formations if (I2)) is lifted into a larger space that is equipped with a contact
structure and the lifted equation ([2)) will generate the time evolution that pre-
serves the contact structure. From the side of physics, the motivation (and
guidance) for this type of reformulation of (I2) comes from the following con-
siderations. In the classical (both equilibrium and nonequilibrium) thermody-
namics the conjugate state variables like the temperature and the pressure play
the role of the same (if not larger) importance as the energy and volume. We
can therefore suggest to adopt the conjugate state variables z* as independent
state variables. We introduce a large space M with coordinates (z,z*,z2) ,
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x e MV a* € M™; 2z € R. The fact that z and z* are related in thermodynam-
ics by 2* = SI(x) suggests that its submanifold

M = {(z,2*,2) € M'|z* = SI(z); 2 = ST ()} (25)

is both physically and mathematically significant. From the physical point of
view, the thermodynamics takes place on 9MT. The mathematical significance of
the submanifold 9" stems from the fact that M' is equipped with the contact
structure defined by the 1-form

dz — z*dx (26)

and 9T is its a Legendre submanifold. We recall that the Legendre submanifold
is defined as a manifold on which the contact 1-form equals zero. We note that
[dz — z*dz]gpr = 0.

In order to include the MaxEnt reduction (I9) into the contact geometry
formulation we have to still enlarge the space M'. We enlarge it into the space

M with coordinates (z,z*, E*,N*, E, N, z) and equip it with the 1-form dz —
x*dx — EdE* — NdN*. The Legendre manifold (28] turns in M into another
Legendre manifold

M = {(z,2", E*,N*,E,N,z) € M1|2* =}, E = dL.; N = dl.;2 = o1}
(27)
The MaxEnt reduction takes place on 5)?7 and 5)?7 is again the Legendre mani-
fold.

What remains is to lift (I2) to M in such a way that : (i) the 1-form
dz — x*dr — EdE* — NdN™ is preserved in the time evolution generated by the
lifted (I2)), and (ii) the Legendre manifold M7 is invariant in the time evolution
generated by the lifted (I2)) and the lifted equa‘zi_gn @2 restricted to 5)?7 is

exactly the equation (I2)). The time evolution in M' satisfying these properties
will be called contact reducing time evolution.

As for the first point, the canonical form of the time evolution equations
preserving a given (maximally non-integrable) 1-form is well known [2], [9]. The
form resembles the form of the canonical Hamilton equations. In particular, the
vector field is a gradient of a potential (called a reducing contact Hamiltonian
E"(z,2*, E*, N*, E, N, z)) transformed into a vector by the contact geometrical
structure (similarly as the Hamiltonian vector field (@) is the gradient E] of the
Hamiltonian E'(z) transformed into a vector by the symplectic structure, i.e.
by the bivector LT).

Regarding the second point, the contact Hamiltonian E' (x,2*, E*, N* E, N, z)),
identified in [12], [I3] is essentially the rate reducing thermodynamic poten-
tial B7) with 7 = E(z,2*) — [E(z,27)] W* = E*, and WT =<
v*, LTE] >.

Summing up: (i) the contact structure of the space M' remains unchanged
during the contact reducing time evolution, (ii) the contact reducing time evo-

m*:@l ?

lution takes place on the Legendre manifold 9t given in (27]), (iii) the geomet-
rical structures appearing in ([I2), i.e. the symplectic structure expressed in the
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bivector LT and the generalized gradient structure expressed in the reducing
dissipation potential =T, make their appearance in the contact reducing time
evolution in the reducing contact Hamiltonian E'(z,z*, E*, N*, E, N, 2)).

The contact formulation is thus very satisfactory both from the physical and
the mathematical point of view. The physical satisfaction comes from seeing
the reducing thermodynamic relation ([9) as a relation determining the mani-
fold (the Legendre manifold ([27))) on which the time evolution takes place and
seeing the symplectic and the gradient geometrical structures in the generating
potential Ef(x,z*, E*, N*, E, N, z) (we recall the they enter GENERIC (I2))
in the geometry used to transform gradients of potentials into forces). The
mathematical satis/f_gction comes mainly from the fact that the contact geom-
etry of the space M in which the contact time evolution takes place remains
unchanged during the time evolution. From the mathematical point of view, we
are thus as comfortable as we are with the Hamiltonian dynamics in the setting
of the symplectic geometry and with the gradient dynamics in the setting of the
Riemannian geometry. The GENERIC dynamics formulated in (I2)) involves
two geometrical structures (symplectic and Riemannian), neither of them are
preserved in the course of the time evolution.

Finally, we also recall that the variational formulation that is well known for
both the Hamiltonian dynamics and the gradient dynamics can be, in the setting
of the contact geometry, extended to their combination, i.e. to the GENERIC
dynamics [12]. The contact geometry provides also a natural setting for using
the thermodynamic methods in the control theory [14], [15].

2.4 Passage to a Lower Level with Lower Dynamics

So far, the lower level [ with which we are comparing the upper level £ was
the equilibrium level that distinguishes itself among other levels mainly by the
absence of the time evolution. No time evolution takes place on the equilibrium
level (see (20). We replace now the equilibrium level with a general (but still
lower than £) level [ on which a time evolution (called a lower time evolution)
takes place. What does have to be changed in the investigation of the passage
L= 107

If both levels £ and [ are well established (i.e. well tested with results of ex-
perimental observations) then there has to be a way to prepare the macroscopic
systems under investigations for the level [ and such preparation process has to
be presentable as a time evolution on the level £. In this respect the replacement
of the equilibrium level with the level [ that involves the time evolution does not
bring any change. The question that remains to be answered is as to whether
the preparation process is governed again by ([I2). We shall assume that it is
(2] that governs the preparation process but (I2]) with different potentials and
geometrical structures. We recall that Eq.([I2) describing the preparation pro-
cess to the equilibrium level has arisen as a common structure of this type of
equations developed independently, by many researchers, in different times, and
on many different levels (see Section Hl). No such pool of equations is available
for investigating the approach to mesoscopic levels [ with the time evolution.
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However, the basic physics that is behind (I2) remains the same. We are look-
ing essentially at the same preparation process except that we are interrupting
it before its completion. The microscopic basis of the time evolution describing
the preparation process is again the particle Hamiltonian mechanics and the
gradual disappearance of details in the preparation process that is expected to
be mathematically manifested in the gradual decrease (or increase) of a Lya-
punov like potential. As for the question of what are the potentials and the
geometrical structures appearing in (I2)) that represents a given macroscopic
systems, we leave it at this point unanswered. We shall discuss some examples
in Section M and Section

There is however an important difference in the time evolution representing
the preparation for the equilibrium level and for the mesoscopic level [ involving
the time evolution. In the reduction to the equilibrium level, solutions to the
upper reducing time evolution equations approach fixed points (see ([20)). This
means that the fixed points are eventually (as t — o) reached and then never
leave it. The fixed points are, of course, invariant manifolds. In other words, the
approach to fixed points is automatically an approach to an invariant manifold.
In investigations of the approach to a lower level with the lower time evolution,
trajectories in M1 approach MT(e®) c MT that is in one-to-one relation with
the lower state space M.

The requirement of the invariance of the manifold MT°%) is now highly
non trivial. It is this requirement that makes the investigation of the reduction
to a lower level with the time evolution more difficult than the investigation of
the reduction to the equilibrium level. The result of the investigation £ — [,
where [ involves the lower time evolution, is not only the lower thermodynamic
relation (i.e. the equilibrium thermodynamic relation when [ is the equilibrium
level) but also the lower time evolution. In historically the first investigation of
this type [16], known as the Chapman-Enskog method, the level £ is the level
of kinetic theory represented by the Boltzmann kinetic equation and the level [
is the level of hydrodynamics with the five hydrodynamic fields serving as state
variables (see more in Section [L.]).

As in the investigation of the reduction to the equilibrium level (see [2])) we
begin with

MT = MYD; 2y () (28)

In the Chapman and Enskog investigation (see more in Section A1), y(x) are the
hydrodynamic fields expressed in terms of the one particle distribution function.

The reducing time evolution equation is (I2) with the reducing thermody-
namic relation

y=y(z)
E'(x)
ST(x) (29)

Both the reducing energy E'(x) and the reducing entropy ST(z) are, in general,
different from those appearing in ([9). All reductions depend on both the upper
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level £ and the lower level [. If the lower level changes all quantities appearing
in the reduction change. In particular the energy E'(x) appearing in (Z9) is
only the energy involving the state variables that belong to  but do not belong
to y. In order to avoid overburdening our notation, we do not show explicitly
the dependence on the lower level I

The reducing thermodynamic relation (29)) is again obtained as a result of a
pattern recognition process in the upper phase portrait but the focus is put on a
different pattern than in the the investigation of the passage to the equilibrium
level. Instead of looking for the fixed points ([I7), we look for manifolds MT(ow)
satisfying the following five properties:

()MTew)  prt

(i5) M) G5 in one — to — one relation with M*
(i) M) = [z e MT|®] (z;9*) = 0}

(iv )MT(Z"”) 1s approached as t — oo

(

V)M s mazimally invariant (30)

where
' (z;y*) = =5T(2) + BV E"(2)+ < y*, y(z) > (31)

In the context of the reducing time evolution equation (I2) we require that y(x)
is both the Casimir and the gradient Casimir, ET(x) is the gradient Casimir
and ST(x) is the Casimir. The fifth requirement was not, of course, needed
in the previous section. This new requirement plays now a very important
role in determining the potentials appearing in ([29). The precise meaning of
mazximally invariant (or alternatively ”quasi-invariant”) used in [B0) as well as
the meaning of ”appropriately projected” used in (B3] below remains still a part
of the pattern-recognition analysis of the upper time evolution that has to be
investigated [I7], [18], [19], [20], [21].
The output of the reduction £ — [ is the lower thermodynamics relation

St = SHEY,y) (32)

(obtained from (29) in the same way as ([B2]) is obtained from (9] - see more in
Section 2:2)) and the vector field (compare with (20)))

Tt =T
T*=Sy MT(low)

that, if appropriately projected on the tangent space TMT10%) of the manifold
M (tow) ) and pushed forward on M+ by the mapping (28), becomes the vec-
tor field generating the time evolution on the lower level I In this paper we
limit ourselves only to recalling the main idea behind the Chapman and Enskog
analysis (see more in Section {1l and in Refs. [16], [I7], [18], [19], [20], [21])..
Before leaving this section we make two remarks.
Remark 1
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The original Chapman-Enskog investigation of the reduction of kinetic the-
ory to hydrodynamics, as well as its continuation in [I7], concentrate only on
the derivation of the lower time evolution generated by the vector field (33)).
The larger context of multiscale reductions has led us to the derivation of an
additional result, namely to the reduced thermodynamics relation ([B32) that is
associated with the lower time evolution. In the reduction £ — equilibrium
level we have obtained the equilibrium thermodynamic relation as the reduced
thermodynamic relation and the reduced vector field is no vector field. In the
reduction £ — [ that involves time evolution we obtain lower thermodynamic
relation (B2) and lower time evolution generated by (B3). The reduced thermo-
dynamic relation ([32) represents the thermodynamics on the equilibrium level
that is inherited form the reduction £ — equilibrium level. The reduced ther-
modynamic relation ([B2) represents the thermodynamics on the level [ that is
inherited from the reduction £ — I. As we saw in Section 23] the reduced ther-
modynamic relation ([32) provides the lower state space M () with geometry.

Remark 2

Externally or internally driven macroscopic systems are prevented from reach-
ing the equilibrium level. The equilibrium thermodynamics does not exist for
such systems. However, the behavior of externally or internally driven macro-
scopic systems can often be described on a mesoscopic level I. For example the
experimentally observed behavior of the Rayleigh-Bénard system (a horizontal
layer of a fluid heated from below) can be described on the level of hydrody-
namics (with Boussinesq equations governing the lower time evolution). In other
words, the level of hydrodynamics is well established for the Rayleigh-Bénard
system. This then means that any other level £ that involves more details and
that allows to express the physics of the Rayleigh-Bénard system (for example
the microscopic level) has to be reducible to the level of hydrodynamics. The
resulting lower thermodynamic relation (82) implied by the reduction provides
thus thermodynamics replacing the equilibrium thermodynamics that does not
exist. Summing up, if there exists a well established mesoscopic level for an ex-
ternally or internally driven macroscopic system (however far from equilibrium
and however strong are the external and the internal driving forces) then there
also exists thermodynamics (expressed in the thermodynamic relation ([B2])) for
such system.

2.5 Transitivity of Reductions

A single reduction £ — [ introduces two structures: reducing structure on the
level £ and reduced structure on the level I. The reducing structure consists of
the reducing thermodynamic relation and the reducing time evolution equation.
The reduced structure consists of the reduced thermodynamic relation and the
reduced time evolution equation. Moreover, since for a given lower level [ there
are, in general, many upper levels £ from which it can be reduced, every level
has not one but many reducing and reduced structures. In addition, by replacing
the reduction with rate reduction, the number of the structures is multiplied by
two.
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Not all such structures are however independent. We shall now explore some
of the relations among them. First, we turn to systems with no external and
internal forces that would prevent approach to equilibrium. and to the chain

£ — L — equilibrium (34)

We expect that the reductions are transitive in the sense that the reduced
equilibrium structure arising as a result of the gradual reduction £ — £ —
equilibrium is the same as the reduced equilibrium structures obtained from
the direct reductions £ — equilibrium and £ — equilibrium. This transi-
tivity then implies the following relation between the reduced and the reducing
entropies on the level L:

HY(y) = ST (y) (35)

where H denotes the entropy associated with the reduction £ — £ and S is
the entropy associated with the reduction £ — equilibrium.

Gradual reductions (34) are more difficult to investigate than direct reduc-
tions. Nevertheless, we can, at least partially, illustrate the relation (B8) with
two examples. In both examples the upper level £ is the level of kinetic theory.
The intermediate level £ is in the first example the level of the classical fluid
mechanics with the fields of mass, momentum, and internal energy as state
variables. In the second example the intermediate level £ is the level of the
extended fluid mechanics with n fields, that are velocity moments of the one
particle distribution function (see more in Section [H).

In both examples only the nondissipative part of the time evolution on the
level L is considered. The passage £ — L is, in both examples, the MaxEnt
reduction (see Section 22]) which does not explicitly involve the reducing time
evolution. The reduction £ — equilibrium is not made, in both examples, in
the way described in Section but in the way developed in the classical
nonequilibrium thermodynamics (i.e. as an appearance of a companion local
conservation law implied by a system of local conservation laws - see Section
[43).

The first example is in fact a well known result of the classical nonequi-

librium thermodynamics. We begin with the reducing thermodynamic rela-
tion 29) on the level £ in which z = f(r,v); y(x) = (p(r),u(r),e(r)) =
(fdvf, [ dvvf; [ dv¥’); NY(z) = [dr [dvf; EYz)= [dr[dv¥;
H'(z) = — [dr [dvofInf. The fields (p(r),u(r),e(r)) are hydrodynamics
fields, p is the mass, © momentum and e internal energy. The reducing thermo-
dynamic potential (I3 reaches its minimum at the local Maxwell distribution
and finally the reduced entropy S*(y) on the level £ is the local equilibrium
entropy given in ([32). Neither the reducing nor the reduced time evolution is
included in the investigation of the reduction £ — [.

Next, we look at the time-evolution passage £ — equilibrium. The nondis-
sipative part of the reducing time evolution is the Euler hydrodynamics. To-
gether with the reducing thermodynamic relation (I9) in which N = [drp(r); E
[dre(r), and S = [ drs(p,u,e;r), where s(p, u, e;r) is the local entropy field,
the Euler hydrodynamic equations implies (I3 with the equality in the third
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equation. The entropy conservation S¥ = 0 arises in fact as a local conservation
law % = —a(saui?fi/p) (see more in Section 33)). This is a well known result of
the classical nonequilibrium thermodynamics. The relation ([B3)) is thus in the
context of the first illustration proven.

In the second example [22], we put the first example into the larger context of
Grad’s hierarchy that is a particular reformulation of Boltzmann’s kinetic equa-
tion in which the one particle distribution function is presented in the form of
an infinite set of equations governing the time evolution of its velocity moments
(see more in Section [l). We realize that the hydrodynamic fields are the first
five moments. In the context of Grad’s hierarchy, the first illustration is in fact
a splitting the infinite Grad hierarchy into two parts: the lower part is a closed
system of equations governing the first five moments (the governing equations
of Euler’s hydrodynamics) and the upper part are the remaining equations in
the infinite hierarchy. The analysis of solutions to the upper part of the hier-
archy is replaced (as it was done also in the first illustration) by the MaxEnt
passage (with the Boltzmann entropy) from the one particle distribution to its
five moments. The second illustration of ([BH), worked out in [22], is thus the
same as the first one but with a general number n of Grad’s moments serving
as hydrodynamic fields. Dreyer proves in [22] that all the results that we have
recalled above in the first example for n = 5 hold also for n > 5.

Transitivity of rate reductions in the chain [34]) is discussed in Section

2.6 Criticality

The strength of the autonomy of a level is measured by the strength of fluctu-
ations. The larger are the fluctuations the less autonomous is the level. Large
fluctuations indicate the absence of details, in both experimental observations
and in the mathematical formulation, that cannot be anymore ignored. From
the mathematical point of view, the loss of autonomy is manifested by the loss of
convexity of thermodynamic potentials. The regions in which this is happening
are called critical regions.

Investigations of critical phenomena bring extra difficulties but also extra
simplifications. The first simplification is the mathematical universality of re-
ducing thermodynamic potentials. As shown in the catastrophe theory [23], real
valued smooth functions have in the vicinity of their degenerate critical points
only a few nonequivalent forms (Landau polynomials). The second simplifica-
tion is the inseparability of levels in the critical region allowing to define the
critical region alternatively in terms of reductions.

The first simplification was noted by Landau [24]. Viewing his theory
through the eyes of multiscale thermodynamics, we formulate it in the following
three steps. (i) The equilibrium level is extended to an upper level with an
order parameter, £, playing the role of an extra state variable, (ii) The upper
reducing thermodynamic potential potential ®(&; E*, N*) has a universal form
of Landau polynomials in the extra state variable £ [23]. (iii) MaxEnt reduction
of the extension formulated on the upper level to the equilibrium level implies
a universal critical behavior at the equilibrium level.
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This multiscale viewpoint of the Landau theory is formulated and illustrated
on the van der Waals theory in [25] [26]. The mathematical results of the
universality of thermodynamic potentials in critical regions, that have arisen
in the catastrophe theory [23], may become less surprising if we allegorically
compare them with the very familiar observation that our two friends, Bill and
Bob, are very different in many respects but their behavior in critical situations
is very similar. The criticality overrides the diversity.

The realization of the existence of the second simplification has originally
arisen in the comparison of predictions of the Landau theory with results of
experimental observations. The agreement is found to be only qualitative. In
order to explain it, the attention was turned to the inseparability of levels at
the critical point. It has been realized that the critical points themselves can
be defined as fixed points of a group of transformations (called a renromaliza-
tion group ) representing a pattern recognition process, The fixed point, i.e.
the critical point, is the point where no pattern can be recognized. This type
of idea has originally been formulated in the context of the Gibbs equilibrium
statistical mechanics in [27]. In this formulation the microscopic Hamiltoni-
ans approach in the pattern recognition process (consisting usually of a spatial
coarse graining) to fixed points. In the context of the multiscale thermody-
namics, the renormalization-group approach to critical phenomena has been
formulated in [25] [26]. In this formulation the coefficients of the Landau poly-
nomials approach the fixed points. The pattern recognition process is not the
spatial coarse graining but an extension of the original one component systems
to a two component system followed by MaxEnt reduction back to the origi-
nal one component system. The two components are complete identical, they
are distinguished only by a feature that does not influence at all the physical
properties determining dynamics (e.g. by a colour).

3 Rate Thermodynamics

As we have already emphasized several times, the reduction £ — [ is either a
mathematical formulation of the experimental investigation of the preparation
process for the level [ or, in the case when the time evolution taking place on
the level £ is known, a pattern recognition process in the upper phase portrait.
The recognized pattern is then the reduced phase portrait. In the search for the
pattern we have so far concentrated on the phase portrait in the state space M.
Alternatively, we can look what is happening in the course of the preparation
process in the space X(M71) of the vector fields on MT. Such change in the focus
of our attention is expected to help in recognizing overall features since the lift
to higher order tangent spaces is in fact a way to see larger pieces of trajectories.
Moreover, the recognized lower time evolution will appear in X(MT) as a fixed
point (as the lower vector field) and not as a quasi-invariant submanifold of
the state space MT. It is easier to recognize fixed points than quasi-invariant
submanifolds. For the reason that will appear later in the discussion of relations
between rate reductions and reductions (see also (8])) we shall observe the upper
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time evolution in the space X*(MT) of co-vector fields rather than in the space
X(MT) of vector fields. The elements of X*(MT) (denoted by the symbol X ,
i.e. X € X*(M")) are physically interpreted as thermodynamic forces.

The change from M T to X*(MT) is reflected in our terminology by adding the
prefix "rate”. The reducing time evolution in X(M7") is thus reducing rate-time
evolution and the thermodynamic relation is rate thermodynamic relation. The
elements of X*(MT) are denoted X (i.e. X € X*(MT") ) and Y € X*(M*). The
reducing rate-entropy is denoted %T(X), the reducing rate-energy W7(X), and
the reducing rate-thermodynamic potential ¥T(X;I). Similarly, X+(Y) is the
reduced rate-entropy and W+(Y') the reduced rate-energy. The Maximum En-
tropy principle (MaxEnt principle) becomes Maximum Rate Entropy principle
(MaxRent principle). We try to use the notation established in nonequilibrium
thermodynamics (see also Section L31]). We depart therefore from using X* to
denote the conjugate of X. Instead, we denote the conjugates of X, having the
physical interpretation of thermodynamic fluxes, by the symbol J as it is cus-
tomary in the classical nonequilibrium thermodynamics (see also Section fmm).
Similarly, on the lower level I, the thermodynamic forces are denoted by the
symbol Y and its conjugates, having the physical interpretation of lower level
thermodynamic fluxes, by the symbol I.

From the physical point of view, the preparation process for the level [ is
the same as in Section 241 We just observe it differently. The mathemati-
cal formulation of the MaxRent passage £ — [ begins with the reducing rate
thermodynamic relation

=H(X) (36)

where WT(X) is a rate of energy. The corresponding to it rate thermodynamic
potential reads

X WH ) = -SN(X) + WHX)WH+ < YV(X), T > (37)

where (W, I) are Lagrange multipliers.

Next, we pass by the MaxRent reduction from XT(X) to S+ (W+* I) and
finally (by the ordinary Legendre transformation) to ¥+(W+,Y’). The Legendre
transformations involved in the MaxRent reduction are the same as the Legendre
transformations made in the MaxEnt reduction in Section

If we compare the rate thermodynamic potential 1) with the thermody-
namic potential (I5), we note that the coefficient W** is in rate reductions
analogous to the coefficient E* = % introduced in reductions. We therefore
interpret physically W¥* as an inverse rate temperature T, i.e. W¥* = 7% In
terms of the lower entropy X+ (W+,Y), the rate temperature 7 becomes

1
Si (W Y) = = (38)
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The rate temperature 7 can be measured with a rate thermometer similarly as
the temperature T is measured with a standard thermometer. The difference
between the standard and the rate thermometers is in the walls separating the
thermometers from the system whose temperature is measured. In the standard
thermometers it is a wall that freely passes or stops passing the internal energy.
Such walls are ubiquitous in the nature. In the rate thermometers the walls
have to freely pass or stop passing the rate of the internal energy. Such walls
are certainly not ubiquitous in the nature. The rate temperature remains thus
still only a theoretical concept.

As for the rate time-evolution passage £ — [, we have already noted that
even if the lower level [ involves the lower time evolution in the space of vector
fields X* (M) still approaches to a fixed point (to the lower vector field) and not
to a quasi-invariant manifold. We shall make some additional observations ad-
dressing this aspect of the reducing rate time-evolution in Section[Bl Regarding
other aspects of the time evolution governing the passage X*(MT) — X*(MY),
we conjecture that it possesses the GENERIC structure discussed in Section
213 Contrary to the passage MT — M9 for which we have many specific
examples (that have been developed independently and on many different levels)
that all possess the GENERIC structure, the argument supporting this conjec-
ture is only the consistency that GENERIC provides for combining the time
reversible and nondissipative mechanics with a time irreversible and dissipative
mechanism in which unimportant details are disappearing.

Our discussion of the rate thermodynamics remained so far in the space
X*(M7") in which we did not relate its elements X to MT. We have so far no
connection between the time evolution of X € X*(MT) and the time evolution
of z € MT. These two time evolutions become related if X € X*(MT) becomes
related to # € MT. We have to say something about the function X (z*). We
recall that we have already addressed this function in (8) where we collected
properties of the dissipation potential. In particular, the dissipation potential ="
has been found to depend on z* through its dependence on the thermodynamic
force X and in a way that all four properties in (8) are satisfied.

In order to discuss the compatibility of the rate thermodynamics with the
thermodynamics presented in Section 2 we consider a macroscopic system on
three levels ([34) in the absence of external and internal forces that prevent
approach to equilibrium. The difference between (B4 in Section and this
section is that — in Section represent reductions and in this section it
represents rate reductions. The compatibility of the rate passage £ — £ with
the passage £ — equilibrium requires

SHY) =ENY) (39)

where Y is the co-vector field on the level £. This compatibility relation implies
then the relation
_ o~ — =1 _ * 1
GT =< S’Z(y)vy >= [< Yy ) —y* >]U*:SJ(U) - a[< Y(y )7zy(y*) >]y*—sg(y() )
40
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between the reduced rate entropy and the entropy production, both on the level
L.

Results of the classical nonequilibrium thermodynamics that gave birth to
the rate thermodynamics are recalled in Section [£.3.3

4 Particular Realizations of GENERIC

The unified formulation of equilibrium thermodynamics, non-equilibrium ther-
modynamics, equilibrium statistical mechanics, and non-equilibrium statistical
mechanics provided by multiscale thermodynamics has emerged as a collection
of common features extracted from a large body of investigations of macro-
scopic systems on many different levels ranging from the equilibrium to the
microscopic. We now recall some of the principal results on which the multi-
scale thermodynamics stands. The feedback of the abstract formulation to the
investigation of some specific problems arising in hierarchy reformulations of
dynamics is explored in Section

The first step towards a unified viewpoint of microscopic and mesoscopic
dynamics was made by Alfred Clebsch [28] who cast the Euler hydrodynamics
(i.e. a continuum version of Newton’s mechanics) into the Hamiltonian form.
In particular in Arnold’s [29] formulation, the Hamiltonian fluid mechanics in-
spired efforts to see also other mesoscopic nondissipative dynamical theories
(including for instance kinetic theories) as particular realizations of an abstract
Hamilton dynamics. A modification needed to include dissipative mesoscopic
dynamics was made in [30] and later in [31], [32], [33]. An importance of such
unified formulation has been gradually realized in [34], [35]. Its usefulness, for
instance in fluid mechanics of complex fluids, has been first demonstrated in [36],
[37]. An important step in further theoretical development and in applications
was made in [38], [39] (where the acronym GENERIC, (General Equation for
Nonlinear Equilibrium Reversible-Irreversible Coupling, appeared for the first
time) and also in [40], [41]. The contact geometry formulation of GENERIC
was introduced in [12]. A recent systematic presentation of the multiscale ther-
modynamics, together with many applications, can be found in [42].

4.1 Boltzmann Kinetic Equation: Time-evolution Passage

Historically the first investigation of the time-evolution passage £ — equilibrium
was made by Boltzmann [43]. The physical system in his analysis is the ideal
gas and the upper level L is the level of kinetic theory in which one particle
distribution function f(r,v) € MT plays the role of the state variable (7 is the
position vector and v the momentum of one gas particle). The power and the
enormous importance of Boltzmann’s results, as well as results obtained by his
numerous followers, is not the narrow focus on the ideal gas but the physical
insight and the mathematical structure involved in the investigation.

We have introduced in Section the notion of the entropy ST(z) as a
quantity that plays in mechanics the role of revealing overall features of the
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phase portrait. Following Boltzmann’s insight, the entropy arises in the inves-
tigation of gas dynamics as follows. The events in the gas time evolution that
play the most important role in determining the overall appearance of the phase
portrait are binary collisions. We therefore consider the free flow of the gas parti-
cles and their binary collisions separately. The former induces directly the time
evolution of the one particle distribution function: f(r,v,t) = fo(T—:(r,v)),
where fj(r,v) is the distribution function at ¢ = 0 and I‘t(r, v) is the trajectory
generated by = %; © = 0. The latter enters the vector field on M indirectly.
Complete trajectories of colliding particles are found first and then transformed
into a gain loss balance type vector field on MT. The transformation is, allegor-
ically speaking, a ”retouche” of the trajectories of colliding particles in which
the details are ignored and only the energy and the momentum conservations
are kept. The Boltzmann entropy is then born in an analysis of solutions of the
Boltzmann equation in which the time evolution is generated by a vector field
that is a sum of the Hamiltonian free flow part and the modified collision part.

In mathematical terms, the Boltzmann kinetic equation takes the form (I2)

with
,UQ
:/dr/dvf—; NT(f):/dr/dvf
2m
_ 0A; OBy  9Bj 0A;
{A7B} o /dT/dvf ( 8Ti 8% 8Ti 8vi

/dl/d2/d1’/d2Wf121’ 2) (X +e7 ¥ —2)

X =1 (41)

where m is the mass of one particle. We use hereafter the summation conven-
tion over the repeated indices and the shorthand notation 1 = (ry,v1);2 =
(re,v2),1" = (r],v)); 2" = (v}, v)). Two particles enter the collision with coor-
dinates 1 and 2 and leave it with coordinates 1’ and 2’. It is assumed that the
particles are point particles and their position coordinates remain unchanged
in the collisions (i.e. r1 = 7} = ro = r}). The mechanics of binary collisions
is introduced into the formulation of the kinetic equation (I2) with (I) in two
places, First, in the dissipation potential ZT(f, f*) in the following restrictions
on the choice of W: (i) W # 0 only if the energy and momentum are conserved,
ie. if v+ 03 = (v])? + (vh)? and vy + vy = V) +vh, (i) W > 0, (iii) W is sym-
metric with respect to 1 < 2 and (1,2) < (1/,2'). The second place where the
mechanics of binary collision enters is in the specification of the entropy ST(f)
that enters the dissipation potential Z'(f, f*) in the relation between f and f*
(ie. f*= S’}) The Boltzmann entropy ST(f) = — [dr [dvf(r,v)In f(r,v)
emerges when the form of the collision gain loss balance calculated from the
collision mechanics (see e.g. [10]) is cast into the form E;E (f, f*) (the second
term on the right hand side of (IZ) with ZT given in (@)).

The form of the dissipation potential ZT(f, f*) of the collision part of the
Boltzmann kinetic equation arises naturally if we regard binary collisions as
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chemical reactions [44] in which two species labeled by v; and vs react and pro-
duce two species labeled by v} and v}, and vice versa, The thermodynamic force
X is called in chemical kinetics a chemical affinity. The dissipation potential
Z1(f, f*) appearing in (@) is indeed the dissipation potential arising in chem-
ical kinetics [44]. The property (iv) in (8) is a straightforward consequence of
the symmetries of W(f;1,2,1’,2"). The coefficient a appearing in the property
(iv) is in this example a = 1/4.

We now recall some important properties of solutions to the Boltzmann
kinetic equation. We begin with the global existence of its solutions that has
been proven in [45]. DiPerna and Lions received for this work Fields Medal.
Another Fields Medal was received by Cedric Villani [7] for proving the approach
of solutions of the Boltzmann kinetic equation to the equilibrium states.

The dissipation equilibrium manifold AMT(de?) (see Section 2T.3) is composed
of solutions to E/]E (f, f*) = 0. i.e. solutions to X (f*) = 0. With the Boltzmann
entropy, the solutions are the local Maxwell distribution functions which are also
solutions to

o) _ g,
Qi) =0

M (fre* (), u*(r),n" (1) = =ST(f)
+/dre*(r)e(f;r)—i—/druf(r)ui(f;r)—i—/drn*(r)n(f;r);

elrin) = [ dof s ulfir) = [avros atrin = [avr )

The equilibrium manifold M1(¢® is composed of solutions to the Boltzmann
kinetic equation reached as t — co. These distribution functions are Maxwell
distribution functions that are solutions to

() =0
N (f; E*.N*) = —=ST(f) + E*ET(f) + N*NT(f) (43)

The two manifolds M1(€® and M99 are related by MT(€d) c MT(dea) « prt,

The fact that the Boltzmann kinetic equation is a particular realization (&Il)
of the abstract GENERIC equation (I2]) implies that its solutions approach
the local Maxwell distribution functions [@2). To prove that they approach
a smaller manifold, namely the manifold composed the Maxwell distribution
functions expressing equilibrium states (i.e. solutions to [@3])), requires an extra
effort [7]. The Grad-Villani dissipation enhancement (see Section ZT.3]), needed
to narrow down the asymptotically reached manifold, arises due to the presence
of the free flow in the vector field.

Beside the opportunity to investigate rigorously the approach to the equi-
librium level, Boltzmann’s kinetic theory provides also an opportunity to in-
vestigate the approach to a lower level involving the time evolution (i.e. the

24



situation discussed in Section 2.4]). The mapping (28)]) is chosen as follows

2

f(r,v) = (p(r),u(r),e(r)) = (/ dvmf(r,v),/dv'vf(r,v),/dv;—mf(r,v)>

(4d)
The I-manifold MT® ¢ M is searched by a perturbation method in which the
dissipation equilibrium manifold ([@2)) serves as its initial approximation [16]. In
this initial approximation the Boltzmann kinetic equation turns into the Euler
hydrodynamic equations (i.e. into the Hamiltonian part of the hydrodynamic
equations).

The Chapman-Enskog method thus begins with the dissipation equilibrium
manifold ([@2)), the Euler vector field on its tangent space, the Boltzmann en-
tropy, and the local equilibrium reduced thermodynamic relation in the hydro-
dynamics state space that is implied (see ([@2))) by the Boltzmann entropy. The
next step in the Chapman-Enskog method is a deformation of the dissipation
equilibrium manifold [@2)), (that we now denote MT(@40)) into MT(dedl) that is
required to be more invariant than MT(@40)) We say that a manifold M C M
is more invariant, with respect to F € X(M), than a submanifold N' C M if,
roughly speaking, the vector field [F]aq is sticking out of T'M more than the
vector field [F|ys is sticking out of TN. Results of the investigation will still,
of course, depend on the precise meaning we give to ”sticking out more” and
"sticking out less” (see more in [I7]).

After making the first step in the Chapman-Enskog method we obtain an ap-
propriately deformed manifold MT(4¢41) with the Navier-Stokes-Fourier vector
field on its tangent space and a new entropy S (whose maximization provides
MT(deal)y and the corresponding to it new reduced thermodynamic relation.

The Navier-Stokes-Fourier vector field is the vector field
[Boltzmann vector field] y reqny that is appropriately projected on the tangent
space of the manifold M™(4¢4)) (see more details in [I8], [I7], [19], [20], [21]. The
reducing entropy ST(z) is obtained as follows. Let M™% be the initial manifold
with which the Chapman-Enskog iterations begin. In the context of the reduc-
tion of kinetic theory to hydrodynamics the manifold M™% is the manifold
formed by local Maxwell distributions. The manifold corresponding to the first
Chapman-Enskog approximation is denoted M), Let ST (), ST (x) be
the entropies corresponding to M1 M) in the sense that MT0) is formed
by solutions to ([6) with ST(®)(z) and M) is formed by solutions to (I8) with
ST (x). In the context of the reduction of kinetic theory to hydrodynamics
STO)(z) is the Boltzmann entropy. This type of the Chapman-Enskog sequence
of reducing entropies that is induced by the sequence of the Chapman-Enskog
reduced vector fields is discussed in [I8] [19],[20], [21].

An alternative investigation of the reduction kinetic theory level — hydro-
dynamics level that begins with the Grad hierarchy formulation of the kinetic
equation [82] will be discussed in Section and Section

Both the Chapman-Enskog and the Grad types of reductions require a com-
plex investigation of solutions of the kinetic equations. If we however concen-
trate our attention only on kinematics then the reduction from the kinemat-
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ics of the one particle distribution function expressed in the Poisson bracket
) to the kinematics of the hydrodynamic fields expressed mathematically in
the Poisson bracket (B3] is completely straightforward and completely rigor-
ous. The derivation proceeds as follows. First, we limit the Poisson bracket
in () to functions A, B that depend on f only through their dependence
on ([dvf, [ dvn(f), [dvvf), where [dr [dvn(f) is a Casimir of the Poisson
bracket ([I). This means that we replace Ay with A,+nyA;+v Ay and similarly
By with B, + nyBs + vBy. Straightforward calculations (see [42], references
cited therein, and [46]) lead then from (I]) to (G5I).

4.2 Gibbs Equilibrium Statistical Mechanics: MaxEnt Pas-
sage

The MaxEnt passage £ — [, discussed in Section 2.2] was made first by Gibbs
[47] for £ being the microscopic level and [ the equilibrium level. The reducing
time evolution equation describing the preparation process for such passage is
not a part of the Gibbs analysis. The preparation process is represented only
in a few requirements: the gradient part of the reducing time evolution by a
reducing entropy that is required to be maximized, the Hamiltonian part by
constraints in the maximization. The applicability of the Gibbs reduction is
universal.

In mathematical terms, the Gibbs MaxEnt reduction starts with the upper
reducing thermodynamic relation

/dl,...,/de(l,...,N)

/dl,...,/de(l,...,N)e(l,...,N)
ST(f) = —kB/dl,...,/de(l,...,N)lnf(l,...,N) (45)

NT(f)
E'(f)

where kp is the Boltzmann constant, f(1,...,N) € MT is the N-particle distri-
bution function serving as the state variable on the microscopic level; N ~ 1023
is the number of particles, e(1, ..., N) is the energy (Hamiltonian) of n particles,
kp is the Boltzmann constant. The passage to the equilibrium thermodynamic
relation (B2)) is made in the way described in Section

We now compare the Gibbs MaxEnt passage to the equilibrium level with
the Boltzmann’s time-evolution passage (see Section 1)) also to the equilibrium
level. Boltzmann begins with an insight into the appearance of the phase por-
trait of the reducing time evolution equation. The crucial role in the emergence
of the equilibrium pattern in the phase portrait is expected to be played by
collisions. The part of the vector field generating the collision trajectories is
thus first ”pre-processed” before putting it back to the total vector field. The
pre-processing consists of ignoring details and keeping only the momentum and
energy conservations. In this viewpoint, the pre-processed collision vector field
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takes the form of a gain-loss balance known from chemical kinetics. An inves-
tigation of the time evolution governed by the Boltzmann equation, i.e. by free
flow vector field 4+ pre-processed collision vector field, reveals that the approach
to the equilibrium level is driven by Botzmann’s H-function that we call the
Boltzmann entropy. The equilibrium level can be reached by following the time
evolution governed by the Boltzmann equation or alternatively and equivalently
by MaxEnt reduction process in which the Boltzmann H-function is maximized
subjected to the energy and the number of moles constraints.

Gibbs also begins with an insight into the appearance of the phase portrait.
However, instead of expressing it in a modification of the vector field that gen-
erates it, as Boltzmann does, Gibbs expresses it directly in the entropy that
generates it in the MaxEnt reduction. Both the Gibbs entropy (that is uni-
versal on the microscopic level) and its maximization (the MaxEnt principle)
are postulated. The microscopic Hamiltonian vector field is represented in the
Gibbs MaxEnt reduction only in the constraint of the Gibbs entropy maximiza-
tion. The energy is required to remain unchanged in the reduction. The Gibbs
equilibrium pattern is also often called ”ergodic” with only very vague reference
to the rigorous mathematical definition of ergodicity in the theory of dynamical
systems on measurable spaces [48]. The phase portrait of the ergodic (in the
rigorous mathematical sense) time evolution does possess the Gibbs pattern but
the Gibbs MaxFEnt reduction applies to a much larger class of time evolutions.

There is, of course, an enormous difference between the Boltzmann and
the Gibbs approaches to the passage £L — [ in the domain of applicability.
While the Gibbs theory is applicable to all macroscopic systems, the Boltzmann
theory is applicable only to ideal gases. The pattern that in in the upper-
level phase space in the Gibbs theory characterizes the equilibrium level (as
well as the entropy generating it in the MaxEnt reduction) is universal but it
is postulated. In the Boltzmann theory the pattern in the upper-level phase
portrait characterizing the equilibrium level is generated by the time evolution
governed by the Boltzmann equation but the analysis is made only for ideal
gases. Nevertheless, as we have already pointed out in the previous section, the
mathematical structure of the Boltzmann equation has inspired and continues
to inspire investigations of the time evolution of macroscopic systems on all
levels.

An obvious question is of what is the time-evolution passage that becomes
the Gibbs MaxEnt transformation if only an initial state and the final state
reached as t — oo are considered. This question was already asked in [49].
We continue to discuss it here. The kinematics of the N-particle distribution
function is expressed mathematically in the Poisson bracket

{A, B} :/dl.../de [aAf 0B; _ 0B; 04y (46)

87"0”' 81)0”' 81"0”' 81)0”'

Its derivation follows completely the derivation of the Poisson bracket for the
1-particle distribution function appearing in ([@Il). The time evolution equation
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@) corresponding to the bracket (@g]) is the Liouville equation [50], [51], [52]

af 0 OEy 0 OE;
2 47
ot Ore <f (%m-)  Bvas (f Orai (47)
Next, we follow Boltzmann and introduce dissipation. From the physical
point of view, we need to identify an event (or events) in which unimportant
details are generated. Such events are analogical to binary collisions in ideal

gases. Let such event be identified. The vector field generating it is replaced by
an in-and-out balance generated by mappings

Y(1,..,N)=(1',..,N') (48)

that we call a Boltzmann regularization mappings. In Boltzmann’s analysis of
an ideal gas, the mappings Y represents transformations of incoming momenta
(v1,v2) of a binary collision into the outcoming momenta (v}, v5). The invari-
ants of Y are (r1, (r1 —r2 = 0), (v1 +v2), (v1)? + (v2)?) expressing the physical
assumption that the gas particles are point particles and that the particle trajec-
tories in the collision are determined by Hamilton’s mechanics but their details
are ignored, only the momentum and the energy conservations are honored. In
the general setting (48] we assume that the mappings are one-to-one and that
their invariants are

B={bi(1,..; N, o, bn(1, .., N)} (49)

where m functions (b1, ..., by,), satisfy b1 (1,..., N) = b1 (T (1, ..., N)), ..., b (1, ..., N) =
b (Y (1, ..., N)). Still following Boltzmann’s analysis, we introduce the thermo-
dynamic forces

X(f*) = f*(1, ... N) = f*(1', ..., N') (50)

and the dissipation potential Z'. We choose Z' to be the same as the one
appearing in (1)) but with X given in (B0). We now add to the right hand side
of the Liouville equation ([@7)) an additional term Zy-. The resulting equation

of & (,0E; 8 (,0Er\ | -
E T 8Tai (favm-> + 8’Uai (faTai> + =r (51)

possess the GENERIC structure and consequently, see Section 2.1.3] its solu-
tions approach solutions to X = 0. Such solutions form a manifold MT(¢9) =
{feMf=3", <blb; >}, parametrized by b3, ..., b},.

The Boltzmann-inspired ”retouche” of the phase portrait that we presented
above is similar to the Ehrenfest regularization (Ehrenfest ”retouche”) [53], [20]
in which very small pieces of trajectories are pre-processed.

A likely scenario of the Gibbs time-evolution passage to the equilibrium level
is the following. The time evolution begins with a weak dissipation, i.e. with
a large set ([@9) of invariants which means that only a few details are being
ignored. In the course of the time evolution the dissipation increases due to
the Grad-Villani enhancement (see Section ZT3) until the set B of invariants
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of the Boltzmann regularization mappings [8) becomes the small set {f €
MT|E(f) = E;N(f) = N}. In order to continue to discuss this scenario one
must discuss in particular the set of the invariants ([49) representing the seed of
the dissipation, applicability of the Grad-Villani enhancement of the dissipation,
and the entropy entering the relation between f and f*. All these discussions
have to arise in an analysis of solutions to (7))

4.3 Euler Fluid Mechanics: Local Conservation Laws

The level of fluid mechanics is the oldest [64] and undoubtedly the most im-
portant (at least from the application point of view) mesoscopic level. It has
also served as a nucleus of other nearby levels, like for instance the level of
mechanics of solids, the level of the mechanics of complex fluids (rheology), the
classical nonequilibrium thermodynamics, and also many fields in mathemat-
ics. We recall below some aspects of its relations to mechanics, kinetic theory,
and equilibrium thermodynamics. We also recall some branches of physics and
mathematics that grew out of these investigations.

4.3.1 Relation to Newton’s mechanics

Leonhard Euler [54] has introduced fluid mechanics as a continuum version of
Newton’s mechanics of particles. The state variables are the fields

(p(r), e(r), u(r)). (52)

of mass, energy, and momentum respectively. The total mass M (/") = [ drp(r),
the total energy EU™ = [ dre(r) and the total momentum UY™ = [ dru(r)
remain unchanged during the time evolution. If we limit ourselves to fluids
with only local interactions then this property implies that the time evolution
equations form a system of local conservation laws (also called balance laws)

% 7 _8J1(P)
ot - 8ri
g 9JY
8t B 8’[”1'
(u)

=~ (53)
8t 8Tj

The fields (J(”), J©), J(“)) appearing in (B3) are fluxes. Their specification as
functions of the state variables (p(r),e(r), u(r)) is called a constitutive relation
(see e.g. [B3], [BO]). The individual nature of the fluids is expressed in (B3) in
the constitutive relations. The third equation in (B3] has two physical inter-
pretations, one as a local conservation law (momentum conservation), and the
other as a continuum version of Newton’s law (mass times acceleration equals
force).
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The Hamilton formulation of the governing equations of fluid mechanics has
appeared in 1859 in Ref.[28]. We present it in the form introduced by Arnold
[29]. We begin with only the field w(r) in the set of the state variable (B2). Our
objective is to find a particular realization of @) with x = w(r). In order to
find the kinematics of u(r) (i.e. in order to determining the Poisson bivector
L") we turn to the physics of continuum. Following Euler [54], continuum is
the space R? and its motion is a Lie group of transformations R? — R3. Arnold
[29] has realized that the momentum field w(r) is an element of the Lie algebra
that is associated with the Lie group of the transformations R® — R3 and
consequently that the Poisson bracket that is canonically associated with the
Lie algebra [57], [58] (that in the case of Lie group of transformations R® — R3)
has the form {A, B} = [ dru; (%A—;]L?Buj - %A% )) expresses mathematically
the kinematics of the continuum.

In order to identify the kinematics of the full set (G2 of the state variables
that also satisfies the degeneracy requirement (see Section ZI.1]), we make an
extra hypothesis about the time evolution on the level of fluid mechanics. We
replace the energy field e(r) in (52)) with another scalar field s(r) = s(p, e, u; r)
that is required to satisfy:

(p(r),e(r),u(r)) S (p(r),s(r),u(r)) is a one — to — one transformation

s dp e ou;  9J>
o~ o e T T (54)

where J® is a flux of the field s. The flux J) is a function of the hydrodynamic
fields. Its specification is a part of the constitutive relation. The physical
interpretation of (B4)) will appear in Section E.3.3]in the discussion of the relation
of fluid mechanics with equilibrium thermodynamics. In the rest of this section
we shall use the fields (p(r), s(r), u(r)) as the state variables of fluid mechanics.

The two scalar fields (p(7), s(r)) are assumed to be passively advected with
the motion of the continuum. With the use of the concept of semi-direct
product [57],[58] the complete Poisson bracket expressing the kinematics of

(p(r), s(r),u(r)) is given by

OA,, OB,
(a8} = far[u(Fen, - Fea,)

o (L, -2

8rj (9T‘j
0As 0B;
s < 8rj / 8rj ])] ( )
The equations (B]) governing the Hamiltonian time evolution of (p(7), s(r), u(r))
are thus
@ L aJi(P)
ot - 8ri
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ds gy

8t 8ri
(u)
Bui _ 8JU (56)
8t 8rj
where
Ji(p) _ pEZI
Ji(s) = sE;_
(w _ ot g
Jiit = wily, + pdi
p = —e+ pEg + sE! + uZEZ (57)

We see thus that the requirement expressed in the second equation in (B4) is
satisfied and thus S = [ drs(r) is the Casimir of the Poisson bracket (55).

The Hamiltonian formulation of Euler’s equations (G6) has at least four ad-
vantages: (i) the constitutive relation for the nondissipative part of the time
evolution are specified (see (1)) with only the energy E(p, s,u) remaining to
be determined, (ii) it provides a framework for investigations dynamics of more
general fluids (e.g. complex fluids studied in rheology [I8]) for which the frame-
work (B3)) of balance laws cannot be used, (iii) it can also be used on other
mesoscopic and microscopic levels of description, (iv) it offers promising new
approaches to numerical fluid mechanics [59]. In spite of these obvious advan-
tages the Hamiltonian formulation is still absent in most standard textbooks of
fluid mechanics.

The gradient part of the time evolution will appear in Section£.3.3in the dis-
cussion of the relation between the level of fluid mechanics and the equilibrium
level.

Looking at (B3) and (B4) just from the mathematical point of view, we
see a system of local conservations laws (B3]) implying another companion con-
servation law (B4]). Are there any mathematical consequences of the physical
regularity of (B3] expressed in the requirement (54)? Godunov [60], [61], (see
also [62], [63], [64], [65]) have shown that the physical regularity implies the
mathematical regularity in the sense that (54]) guarantees that the Riemannian
problem for (B6]) is well posed. More specifically, (B4]) implies that (53]) rewrit-
ten in the conjugate state variables is a system of symmetric local conservation
laws.

The observation that (B3], beside being the system of local conservation
laws, is also a Hamiltonian system, and that (B4) is a stronger formulation
of the degeneracy of the Hamiltonian structure ([ drs(r) is a Casimir) evokes
several questions that remain unanswered. For instance: (i) when does a general
system of local conservation laws possess the Hamiltonian structure, (ii) does
the degeneracy of a Hamiltonian system implies an increase in its mathematical
regularity.
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4.3.2 Relation to more microscopic levels

The level of fluid mechanics is presented in the previous section as a continuum
version of Newton’s (or Hamilton’s ) dynamics. Let us now take an upper
mesoscopic level £ that involves more details than the level of fluid mechanics
(e.g. the level of kinetic theory) and consider the passage £ — fluid mechanics.
We have already recalled one such passage with £ being the level of kinetic
theory in Section An alternative way (a way based on the hierarchy
formulation of the Boltzmann equation) to make the same passage is discussed
below in Section

With the microscopic level (i.e. a level on which n-particle distribution
function, n ~ 1023, rather than l-particle distribution function serves as the
state variable) playing the role of the upper level £, the passage £ — fluid
mechanics was investigated by Kirkwood [66]. This type of investigations has
led to the theoretical fluid mechanics of complex fluids as for example polymeric
fluids and suspensions [67].

We make two remarks. First, we note an important difference between
the multiscale viewpoint of the passage Boltzmann kinetic equation — fluid
mechanics and its classical analysis found for example in Refs. [16], [68], [69],
[70], |71], [72]. In the latter the Boltzmann kinetic equation plays the role of
a microscopic basis for the classical nonequilibrium thermodynamics. In the
former, the Boltzmann kinetic theory as well as the classical nonequilibrium
thermodynamics are two particular realizations, on two different levels, of a
single but abstract nonequilibrium thermodynamics.

In the second remark we note an obvious paradox in the investigation of
Boltzmann kinetic equation — fluid mechanics. The Boltzmann kinetic theory is
applicable only to ideal gases while the domain of applicability of fluid mechanics
includes a large family of fluids. The usefulness of the investigations Boltzmann
kinetic equation— fluid mechanics is an indirect proof of the usefulness of seeing
mesoscopic dynamical systems in a modular way as it is done for example in
Section 2.1 What transpires from kinetic theory to fluid mechanics are only
some of its modules (in particular the overall mathematical structure), not the
complete theory (in particular not specific energies and specific entropies). The
completely straightforward and completely rigorous derivation of the Poisson
bracket expressing kinematics of the hydrodynamic state variables from the
Poisson bracket expressing kinematics of one particle distribution function, that
we recalled at the end of Section [4.1] illustrates well this point. As we shall see
also in the next section, some modules of the mathematical structure of the
Boltzmann kinetic equation that are revealed in its Grad hierarchy formulation
have inspired, and continues to inspire, not only the classical fluid mechanics
but also its extensions towards dense fluids, polymeric fluid, and many other
types of complex fluids.
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4.3.3 Relation to equilibrium thermodynamics: nonequilibrium ther-
modynamics

Inquiries into relations between fluid mechanics and equilibrium thermodynam-
ics gave rise to nonequilibrium thermodynamics. Our objective in this section
is to identify in its tumultuous history a path pointing to the multiscale ther-
modynamics discussed in this paper. We present the path as a sequence of four
steps.

The base on which the classical nonequilibrium thermodynamics stands is
the continuum mechanics introduced by Euler and Bernoulli [54]. If we put
it into the context of Section B3] it is the fluid mechanics with only the
momentum field u(r) playing the role of the state variable. In other words, the
fluids under investigation are isothermal and incompressible. This type of fluid
mechanics has played and continues to play an enormously important role in all
types of the most basic as well as the most advanced technologies.

The first step towards the multiscale thermodynamics is mechanics of non
isothermal and compressible fluids and investigations of its compatibility with
the classical equilibrium thermodynamics. Two extra fields, namely the fields
of mass density and internal energy are adopted to the set of state variables. In
such enlarged setting the fluid mechanics becomes essentially a local classical
thermodynamics superimposed on the mechanics of continuum. The equilibrium
fundamental thermodynamic relation becomes a local equilibrium fundamental
thermodynamic relation, the entropy conservation takes the form of the local
conservation law (54). The Navier-Stokes friction and the Fourier heat diffusion
enter the entropy production (or the dissipation potential) that with the entropy
are two potentials of non mechanical origin that join the formulation of fluid
mechanics.

Combinations of mechanics and equilibrium thermodynamics inspired also
more abstract viewpoints. Their explorations constitute the second step in the
evolution path of the nonequilibrium thermodynamics. The first example of
an abstraction inspired by fluid mechanics is the replacement of (B3] with a
general system of local conservation laws governing the time evolution of n
fields (&1(r),...,&n (7)) with an extra companion local conservation law govern-
ing the time evolution of (n + 1)th field &,41(r) that is a convex function of
(&1(r),...,&(r)). From the physical point of view, the (n + 1)th field is the
entropy field (see the end of Section [4.3.1]).

The second example of the abstraction is the emergence (already in early
stages of the development of nonequilibrium thermodynamics [73], [74], [75]) of
the concepts of entropy production, thermodynamic forces, and thermodynamic
fluxes [76]. Their particular realizations in the context of fluid mechanics have
served as their illustrations but they were seen from the beginning as abstract
concepts. The thermodynamic fluxes and thermodynamic forces together form
the entropy production

G=<X,J> (58)
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or in terms of the dissipation potential Z(X)
G =<X,Ex > (59)

Particularly significant in this line of research are results of Onsager [T7] who
showed that in the case of the quadratic dissipation potential = =< X, AX >
(that physically corresponds to situations with small X and thus situations
when the macroscopic systems under investigation are close to equilibrium) the
operator A is symmetric and positive definite. The rate thermodynamics that
we recalled in Section B is an incorporation of this type of investigations into
the larger context of multiscale thermodynamics.

The third example is Truesdell’s axiomatic formulation of continuum me-
chanics [55]. While his choice of axioms may be questioned, the emphasize
on the abstract mathematics is unquestionably a significant contribution to
fluid mechanics. For instance restrictions on the choice of constitutive rela-
tions brought about by the requirement of the entropy increase have been first
investigated in Truesdell’s formulation of fluid mechanics [78].

In the spirit of multiscale thermodynamics discussed in this paper, an im-
portant criterion for abstract formulations is the occurrence and applicability
on all levels. Not all Truesdell’s axioms fulfill this criterion. For instance the
local temperature cannot be seen on more microscopic levels as a fundamental
state variable (see Section [2.2]).

The third step on the path to the multiscale thermodynamics is seeing the
Boltzmann kinetic theory as nonequilibrium thermodynamics itself, not only as
a microscopic basis for the classical (i.e. fluid-mechanics-based) nonequilibrium
thermodynamics.

The fourth step on the path to the multiscale thermodynamics is the neces-
sity to enlarge the set of the five hydrodynamic fields playing the role of state
variables in the classical fluid mechanics when dealing with complex fluids (as
for example polymeric fluids and suspensions). The molecules (particles) com-
posing the complex fluids deform and reorient themselves at the same time scale
as the hydrodynamic fields evolve. Consequently, extra fields characterizing the
internal structure have to be adopted to the set of state variables. But then
the system of local conservation laws (also called ”balance laws”) (B3] cannot
be the point of departure (as it is in the classical fluid mechanics and the clas-
sical nonequilibrium thermodynamics) since the extra fields are typically not
conserved. What is then an overall structure that would replace (B3)? In the
setting of mesoscopic thermodynamics, the answer is: it is the Hamiltonian (or
the GENERIC) structure.

5 Kinematics-preserving Hierarchies
One of the oldest and probably still the most frequently used strategy to make
reductions is to begin by casting the upper level governing equations into a

hierarchy of equations. The hierarchy reformulation is chosen in such a way
that the lower part of the hierarchy is already the system of reduced governing
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equations that we look for except that the equations still remain coupled to
the rest of the hierarchy. Our objective in this section is to place the hierarchy
reductions into the larger context of the multiscale thermodynamics and to show
some of the implications.

We present the mathematical formulation first for the case when the upper
state variable x € M" is the N-particle distribution function f(1,...,N) (we
recall that we use the shorthand notation 1 = (r1,v1),..., N = (ry,vy)). Our
objective is to lift the time evolution of f to space MT with the state variables
Z=(Z,f(1,...,N)) € MT, where

L= (21, %) = (/dl.../de(l,...,N)zl(l,...N),...,
/dl.../de(l,...,N)zn(l,...N)> (60)

and z(1,..., N) = (z1(1,...; N), ..., 2 (1, ..., N)) is a fixed set of n functions. We
recall that reduction is a pattern recognition in the upper phase portrait. We
assume that from some previous considerations we already have a reason to
anticipate that Z will play an important role in expressing the pattern (see
examples in Sections (.2.1] and (5:2.2).

As for the time evolution of f on the level £, we restrict ourselves to the
time evolution equations in the form ([B)). In other words, we consider the time
evolution equations in the form

A={AE}" VA (61)

where {A, B}" is a Poisson bracket. We thus consider in this section only
Hamiltonian dynamics. However, the contact geometry setting that is dis-
cussed in Section 23] a slightly modified Eq.(1]) (see Eq.(7.7) in Ref.[42]) rep-
resents also GENERIC dynamics. Kinematics-preserving hierarchy formulation
of GENERIC dynamics will be explored in a future paper.

Having the time evolution equation (3] and the mapping (60), the first equa-
tion in the standard hierarchy reformulation of ([3) is obtained by multiplying
@) by z1(1, ..., N) and integrating over [ dl... [ dN. The second equation is ob-
tained in the same way but with z2(1, ..., N) replacing z1(1, ..., N). Continuing
this process we obtain the standard hierarchy consisting of n+ 1 time evolution
equations; n equations governing the time evolution of Z that are coupled to
the (n + 1)th equation (A7) governing the time evolution of f. The next step
in the reduction is the ”closure of the hierarchy” consisting of expressing f in
terms of Z. The final reduced dynamics in M consists of n equations governing
the time evolution of Z. In the unclosed form the hierarchical reformulation
represents in fact a coupled dynamics of the upper and the lower levels. By
choosing appropriately the functions z(1,..., N) = (z1(1,..., N), ..., z,(1, ..., N))
(see e.g. illustrations in Sections [B.2.T]and [(:2.2)), the resulting hierarchy can be
made to involve only Z and not f. The prize to pay for such elimination of the
overall state variable f is that n = oo, i.e. the hierarchy is infinite. The closure
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in such case consists of replacing an infinite hierarchy with a finite hierarchy
(see Sections [(.2.1] and below).

In this paper we take another path. We shall make an alternative hierarchy
reformulation of ([B]). We use the fact that the vector field @) (i.e. the right hand
side of (B])) is composed of two structural elements and cast into the hierarchy
form only one of them. The vector field (]) is a force (gradient of a potential
E) transformed into a vector by kinematics expressed mathematically in the
bivector LT (or equivalently in the Poisson bracket {,}T). In the hierarchy
reformulation we concentrate only on the kinematics, i.e. only on the Poisson
bracket {, }T. We reformulate it into a hierarchy form that retains the Poisson
structure. The energy E remains in the reformulation undetermined.

In order to obtain such kinematics-preserving reformulation of the Liouville
equation ([{T), we proceed as follows. The functions A and B in the Pois-
son bracket {A, B} are assumed to depend on f both directly and through
their dependence on Z given in (60). This means that Az« n) turns into
2a(1,...,N)Az, + Ay, where a = 1,...,n (the summation convention over re-
peated indices is used). With these expressions for Ay and By, the Poisson
bracket ([@@) becomes

sy = [a. | de{aZ“ 92 (A2, Bz, — Bz, Az,)

Ar-yi Dvys
v (4Gt - ma 5 )
e (5,080 - 2, 521 )
o (108 05:04,) )

The time evolution equations (GI)) with {A, B} given in (62)) take the form

0zq Ozg 0z 0zq
dl... [ dN — E
/ / f |:(8T’yi 81)71' 87’,”' 81)71') Zs
((fiza 8Ef _ 8za (9Ef)]

8T'»Yi 81)71' 8’071' 87’71'

of o 024 ) 0za
E - _8T»Yi (f 81)71') EZQ + 8T»ﬂ (f 87”71') EZQ

0 <f8Ef)+ 0 <f8Ef> (63)

67‘71‘ 6’UW' 6’1)% 8@1-

Za

Summing up, we have cast [@T) into the form (€3). Both equations T
and (63]) are Hamilton’s equations, both are particular realizations of (GI). The
reason why we have passed from ([@7) to (G3) is that the latter equation is more
suitable for starting the reduction process. We assume we know from some other
considerations (for instance from experimental observations) that the pattern
that represents the lower level in the phase portrait of [@7) can be expressed

36



in terms of Z. If this is the case then clearly the reformulation (63) of [T is
more suitable for investigating the reduction. Both (G3]) and (@) share the same
kinematics but the energies in them remain so far completely unrelated and at
this point undetermined. Their determination is a part of the continuation of
the pattern recognition process in the phase portrait of {7 that has to enter
into an actual analysis of solutions to (T]).

In this paper we make only a few comments about physical aspects of the
hierarchy (G3). Let Z be the state variables used on the lower level. The
hierarchy (63]) thus governs the time evolution on the lower level. However, the
time evolution governed by (63)) is still coupled to the time evolution of f. We
can physically interpret f as a state variable characterizing overall features of the
phase portrait of ([{1) that are not expressed in the lower state variables Z. An
example of considerations, based on physical assumptions and approximations,
that lead to expressing f in terms of Z) is presented in the next section.

Still another insight into the physics expressed in the hierarchy (63)) is re-
vealed in its following reformulation. We note that the last equation in (G3)) (i.e.
the equation governing the time evolution of f) can be seen as the Liouville (i.e.
continuity) equation corresponding to 6N ordinary differential equations govern-
ing the time evolution of (1, ..., N). We can thus reformulate (G3) into a system
(n 4+ 6N) ordinary differential equations

. 0zq Oz 0z 0zq
Zo = dl... | dN — E

/ / f |:(8’I”»ﬂ' 81)71' 87’71' 81)71') Ze

+ 8za 8Ef _ 8za (9Ef

8T'»Yi 81)71' 8’0,”' 87’,”'

. 8za 8Ef
r’ﬂ a 8’0»”' EZO‘ 81).”'
. - 8Za 8Ef
by = — awE S (64)

that is accompanied with

F(1, ..., N,t) = fo(T_(1,...,N)) (65)

where T, is the trajectory of (1,...,N) and fo(1, ..., N) is an initial distribution
function. In this formulation we see clearly the role of f. It is indeed a state
variable expressing overall features of the dynamics that are expressed neither
in (1,...,N) nor in Z.

Finally, we emphasize that all the reformulations that we have made above
in this section do not involve any approximation. Both (7)) and (G3]) share
the same kinematics (but in different representations) and the energies in both
equations remain undetermined. We can see ([G3]) as a combination of the mi-
croscopic level represented by ([@T) and the mesoscopic level on which Z serve
as state variables. In the next section we makes initial steps in the pattern

recognition process leading to the closure of (G63) (i.e. to expressing f in terms
of Z).
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5.1 Dissipation, Closure

In order to recognize a pattern in the phase portrait corresponding to (@) or to
its reformulation (G3)), the phase portrait has to be first created (i.e. solutions to
1) or to (G3]) have to be found). This can be done only if we specify the energy
ET(z) entering [@T) or (63) and thus commit ourselves to specific macroscopic
systems. An example of such analysis is in [7] for the Boltzmann equation. We
shall not follow this path. Instead, we limit ourselves to some observations of a
qualitative nature that combine physical and mathematical arguments.

First, we emphasize that the choice ([60) of the lower state variables Z is
already a part of the pattern recognition process. We anticipate that the pattern
that we search in the phase portrait corresponding to (@) can be expressed in
terms of Z. For example, we may recall the considerations leading to the choice
of the hydrodynamic fields. Since the total mass, momentum and energy are
conserved, the local mass, momentum and energy change in slower pace than
other mesoscopic state variables.

Having chosen (60]), we follow the previous section and arrive at the hierarchy
@3) (or [€4))) combining the upper and lower levels. Now we make a very obvious
but important observation. We can look at the hierarchy in two ways: ”bottom
up” and "top down”. In (63]) the bottom part is the first equation and the
top part is the second equation. In infinite hierarchies the second equation is
replaced by an infinite hierarchy of equations governing the time evolution of
(Zn+17 Zn_;,_g, )

The standard view is bottom up. It is the reduced dynamics, which is an
appropriately closed bottom part of the hierarchy, that is typically the reason
why the reductions are made. We look at the bottom part of the hierarchy and
try to close it. In the hierarchy (63]) this means that we look at the first equation
and try to express f appearing in it in terms of Z (or in infinite hierarchies
in terms of (Zy4+1, Zn+2,...)). The closure can be argued by putting various
requirements on the closed system of equations. In our analysis the natural
requirement is that the closed system of equations remains to be a system of
Hamilton’s equations. In the case of dissipative dynamics we may require that
an appropriate entropy (a real valued function of Z) will not decrease during
the time evolution governed by the closed system of equations. This latter
requirement first appeared in [78] and was later developed in [79].

But the closure can also be argued from top down. As we have already
noticed in Section 2.5] this viewpoint of the closure is in fact present in the
Chapman-Enskog method and it has also been compared with the bottom up
viewpoint in [22] (where however only the static MaxEnt version of the top part
of the hierarchy is considered). In this paper we continue to explore the top
down view of the closure.

The top part of the hierarchy (G3)) is its second equation in which
z1(1,...;N), ..., zn(1, ..., N) are seen as quantities representing external influences
in the time evolution of f. If (G3]) is cast into the form (G4]) then the top part
consists of the last two equations in ([G4)) together with (65]). The quantities Z
appear in (64) indeed as extra velocities and extra forces in the Hamilton time
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evolution of (1,..., N). In order to close the hierarchy (G3) we have to find the
phase portrait corresponding to its top part and then recognize in it a pattern
parametrized by Z. In other words, we have to express f in terms of Z (we
denote it f (Z;1,...,N)) by analyzing solutions of the top part of the hierarchy.
By inserting f(Z; 1, ..., N) into the lower part of the hierarchy (i.e. into the first
equation in (63))), we arrive at the lower dynamics.

Such investigation cannot be done without making commitment to a specific
physical system and without a type of analysis displayed for example in [7]. In
the rest of this section we make only a very qualitative analysis that transforms
the bottom part of (G3) with the Onsager time evolution equation.

We begin by noting that S(f) = [dl... [dNn(f), where n : R — Ris a
sufficiently regular function, is a Casimir of the Poisson bracket (G2). We can
therefore put (64)) into the form

. 0zo Ozg  0zg 0zq
Zo = dl... [ dN — d
/ / f |:(8’I”»ﬂ' 81)71' 87"71' 8’()71') Zs
(8za 8<I>f (9Za 8<I>f)]

87"71' 8’0»”' 8’071' 87’71'

of B 020 B 0za
E o _87“71» (f 8U7i> (I)ZQ + (%W» (f 87%) (I)ZQ
o [ .00 o (.00
_87“71» (f 8U7i> + 6’UW' <f 67‘71‘) (66)

where ®(Z, f) = —=S(f)+ % E(Z, ) and the constant temperature 7" is absorbed
in rescaling the time. In the next step we introduce to the top equation in the
hierarchy (i.e. to the second equation in (66])) a dissipation. From physical
considerations we anticipate that the dominant dissipation is the Fokker-Planck
type diffusion in momenta. If we restrict ourselves to the linear dissipation (i.e.
if we restrict ourselves to states that are not far from equilibrium states), the
top part of the hierarchy (GG) becomes

of 0 0zq 0 0z
o ‘M(%)‘pzﬁ%@%)%
o (. 00 o (. 0b;
_87"71' <fav'yi> " Dvyi (faT'yi)
) o
o (Frs et (67)

where X is a symmetric matrix guaranteeing [ d1... defg;& ,Y(;ijg%f >0
Y J

To continue, we use physical considerations to identify dominant terms on
the right hand side of ([G7). We recall that this type of arguments is also the
point of departure of the Chapman-Enskog passage from the Boltzmann kinetic
equations to fluid mechanics (see Section .I]). The anticipated dominance of
variations in momenta (which can be physically interpret as an anticipation of
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the occurrence of turbulence on the micro scale), that led us already to the
introduction of the dissipative term in (67), leads us to regard the second term
on the right hand side of (7)) as dominant. We thus assume that the main part
of ([67) is the time evolution equation

af o0 0za 0 0Py

- = Dy — —— | fAs5ii=— 68

at vy <f 87“,,1-) 7 vy, <f 701 av(;j) (68)
‘We have omitted the term % ( gif; ) that we assume to be smaller than the

remaining two terms. Next, we assume that the distribution function f evolves
faster than Z and that we are already in the stage of the time evolution in which
f reached the stationary state.

We need now to solve

9 [, 02, 9 o
0= 81)71' (f 87”»”') (I)Za a’U,ﬂ' (f)‘v&] 81@-) (69)

In order to avoid complications with the degeneracy of the matrix A (that is
needed to satisfy the energy conservation ), we limit ourselves in this paper to
isothermal systems. The thermodynamic potential ® is thus the Helmholtz free
energy and the matrix A is a positive definite matrix which can be inverted. We
can thus easily solve (639)). If we insert the solution into the first equation in (G6])

(in which we omit the term % (
i

the other terms in (G6l)), we obtain

Dz e

avw) that we assume to be small relative to

Zo = Lap®z, — Aap®s, (70)
where
B 0z 0zp 0z 0zq
Las = /d1.../de<6w e (91)71») (71)
Aag = /dl /dzvf%xl 9% (72)
af3 - aTVi 7,05 aT(;j

Equation (7)) governing the time evolution of Z still needs to be closed. The
distribution functions f still appears in the matrices L and A in (1)) and (72).
We assume now that we have an independent information about the overall
state of the system under investigation and thus about f. For instance, if the
system under investigation is close to equilibrium, we can replace f in ([71l), (2]
by the Gibbs equilibrium distribution function.

Considering f in (1) and ([72)) known, Eq.(0) is a closed equation govern-
ing the time evolution of the mesoscopic state variables Z. Equation (70) is the
Onsager equation Ref.[77]. The matrix A is symmetric, positive definite, and it
does not change its sign if the momenta (v, ..., vy ) change their signs. The ma-
trix L is skewsymmetric and it changes its sign if (vq,...,v5) = (—=v1, ..., —UN).
Equation (7)) is also a GENERIC equation since ({{0]) is a particular realiza-
tion of (IZ). The matrix L is indeed skewsymmetric and the Poisson bracket
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{A,B} = Az, LopByz, satisfies the Jacobi identity since L is independent of Z.
We note that the only unspecified parameter in the formulas (71),([2]) for the
matrices L and A is the matrix A (entering the microscopic time evolution (G9)).

Summing up, the Onsager [77] result (Z0) has emerged as a part of the re-
duced structure on the lower level with the state variables Z. The reduction is
made by reducing time evolution that preserves the Hamiltonian structure of the
time evolution that takes place on the upper level. We note in particular that
the Onsager symmetry of A is a direct consequence of the gradient structure on
the upper level that guarantees the existence of the reduction. The skewsymme-
try of L and its sign change in the transformation (v, ...,vn) = (—v1, ..., —UN)
is a direct consequence of the Hamiltonian structure of the upper level time evo-
lution. In the absence of dissipation, Eq.([70) represents GENERIC dynamics.

We can also find the lower rate thermodynamic relation ¥*(y) implied by
the reduction discussed above. We note that with

1
ET(X):—E/dl.../deXw/\msinéj (73)
we can write (G9)) as
(X, Y)=0 (74)
where
(X, Y) = _ET(X)JF/dl.../deYWXW (75)
with )
Za
Y’Yi = aT’YZ-(I)Za (76)

Consequently, the lower rate entropy implied by above reduction is

1 0z 0z
SHY) == [dl.. [dNf==ex)l =B 77
)= [ar. [avs S (77)
We note that Eq.([0) implies
. . 1
d=0y Z, = Ezi (78)

which relates the lower rate entropy to the lower entropy production.

5.2 Illustrations

The Liouville equation (@T) governing the Hamiltonian time evolution of N-
particle distribution function, N ~ 1023, was the first equation that was cast
into the hierarchy form. The hierarchy reformulation of the Liouville equation
7)) is called BBGKY hierarchy [80], [8I]. Another time evolution equation that
gave rise to a famous hierarchy (Grad hierarchy [82]) is the Boltzmann kinetic
equation. Below, we shall cast into hierarchy also the Euler hydrodynamic
equation. The kinematics-preserving hierarchies for all three equations illustrate
the general analysis presented above. In all three hierarchies we limit ourselves
in this paper only to the Hamiltonian part of the time evolution.
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5.2.1 BBGKY kinematics-preserving hierarchy

The state variable on the upper level is the N-particle distribution function
fn(1, ..., N). The lower level state variables are 1, ..., N—1 distribution functions
obtained from fy by integrating over the N — 1, ...,2 coordinates respectively.
All distribution functions are symmetric with respect to to the relabeling the
particles. The kinematics of fx is expressed in the Poisson bracket (4G]).

The infinite kinematics-preserving hierarchy in this setting has been devel-
oped in [83] for 1,..., N, ... distribution functions. Here we present a kinematics-
preserving hierarchy reformulation of the Liouville equation governing the time
evolution of f5(1,2). To simplify the notation, we use f to denote f> and g to
denote f1. The one particle distribution function g is related to f by

g(r,v) = /dl/d2f(1, 2)[6(r —r1)d(v —v1) +5(r —r2)d(v —v2)] (79)

In order to find the kinematics of (f, g) we take the Poisson bracket (48] for
N = 2 with the functions A and B that depend on f directly and also indirectly
through their dependence on g (that depends on f - see ([9)). By replacing A
in @G) with A1 9) = Agr) + Agea) + Af(1,2) and similarly By, 2y, the Poisson
bracket ([@0) becomes the Poisson bracket

{A4,B} = {4 B}
dAy OBy1y 0By 0A,0)
dl [ d2 - — :

+/ / {f (aﬁi vy Oryi Ovy;
s 0Af 0By) 0By 0Ay(2)
87"21' 8’02i 87”21' 81)21'
+ f (9Ag(1) an . 339(1) 6Af
8T1i 81)11' 87”11' 81)11'
o DAy 0By OBy) 0A;
(97‘% (9’1}21' (97”21' (9’1}21'

+{A, BYV=2) (80)

where {A, B}(V=1 and {A, B}(=2) are the Poisson brackets [@®) for N = 1
and N = 2 respectively. There is an important difference between the Poisson
bracket (80) and the bracket (62)). In ([80) the bracket is a sum of three brackets,
one involving only the lower state variable g, the other involve both the upper
f and the lower g state variables, and the third involves only the upper state
variable f, The bracket ([62) is a sum of two terms, one involving both the upper
and the lower state variables and the other only the upper state variable.

The time evolution equation (61l corresponding to the Poisson bracket (80)

becomes
dg - 9 3Eg 0 3Eg
at o (gavi)—i_a_vi (gari>
o (,0E; o (,0Ef
+2/dr2/d1’2 [_3_“_ (f dv; ) " o, (f Ori )}
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The energy E(f,g) remains in these equations undetermined.

Now we discuss qualitative properties of solutions to (8I]). We note that if
the energy E(f,g) is chosen to be independent of f then (BI) turns into the
standard one particle Hamiltonian kinetic equation. This is a consequence of
the presence of the bracket {A, B}(V=1 (that does not involve f) on the right
hand side of [B0). If, on the other hand, the energy E(f,g) is independent of
g then (BI)) becomes the two particle Hamiltonian kinetic equation. For the
energy E that depends on both g and f, the time evolution of the one and the
two particle distribution functions are coupled and the two particle distribution
function f represents extra details that are ignored in the one particle kinetic
theory.

We also note that the kinematics-preserving hierarchy (8T is different from
the classical BBGKY hierarchy

dg(r,v) 0 OB (rv,15.0,)
5 = _8_’1”1- (2/d2f(T,U,T2,U2)T
0 3Ef(r,v,r2,'v2)
+6’Ui (2/d2f(’l",’l),’l"2,’l}2)a—ri)
af(1,2) o [ . OE; o (. OE;
ot o 0;1 8T0¢i favai + 8'0041' farai (82)

where F is a function of f. The classical BBGKY hierarchy is obtained from
Eq.({T) with N = 2 by simply integrating it over [d2. We recall that the
point of departure for obtaining the kinematics-preserving hierarchy (8] is the
kinematics ([46]) with N = 2 while the point of departure for the classical hi-
erarchy (82)) is the 2-particle Liouville equation ([@T). The original equation
@T) with N = 2 is Hamiltonian, its classical hierarchy reformulation (82) is not
Hamiltonian but its kinematics-preserving hierarchy (8I]) keeps the Hamiltonian
structure.

5.2.2 Grad kinematics-preserving hierarchy

For the second illustration we turn to the Boltzmann equation governing the
time evolution of the one particle distribution function f(r,v) and to the time
evolution of its Grad’s moments

flr,v)— (C(O)(r),cl(-l)(r), ...,cgf) i (r),...) (83)

where

cgf)lk (r) = /dvvil...vikf(r,v) (84)
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The kinematics of f is expressed in the Poisson bracket {#6]) with N = 1.

The infinite kinematics-preserving hierarchy with an infinite number of Grad’s
moments (84) as lower state variables has been worked out in [84]. Here we
present a Grad kinematics-preserving 5 moment hierarchy closed by an equa-
tion governing the time evolution of f.

We choose ([83) and (&4]) with
f(r,v) = (p(r),u(r),s(r))
ptr) = [ dws(r.o)s ulr) = [ dvos(r.o) sr) = [ don(sr,v)
(85)

where 7(f) is a sufficiently regular function R — R. We recall that (see Section
1) that [dr [don(f) is a Casimir (see Section ZI1]) of the Poisson bracket
o) with N = 1. We choose the hydrodynamic state variables in the energy
representation (i.e. the state variables are the fields (p(r), u(r), s(r)) denoting
the mass, momentum, and entropy) rather than in the entropy representation
with the state variables (p(r),u(r),e(r), where e(r) is the energy field. The
reason for the choice is explained in Section

From the kinematics of the kinetic theory that is expressed in the Poisson
bracket ([@6]) with N = 1 we derive the kinematics-preserving hierarchy in the
same way as in the previous two sections. The functions A and B in (@) with
N =1 depend on f directly and also through their dependence on the moments
[B5). Consequently, we replace Ay and By with A,y +vi Ay, () +0fr,v)Asry +
Ay (r ) and the same expression for By. Stra1ghtforward calculations then lead
to the Poisson bracket

{A, B} = {4, B}
/dr/dv[ <8AfB —%Aui)
8ri
877,« an
5 (a Z ars )

87”1' 8’01' 87”1' 8’01'
0Ay, OBy OBy, 0A;
+f’UJ ( 8ri (9’Ui B 8ri (9’Ui )
+f O(Asny) 0By 9(Bsny) 0Ay
8ri (%i 8ri (9’Ui
+{4, By (86)

; (aA,, 0B; 9B, aAf>

where { A, B}("¥%) is the Poisson bracket (55 expressing kinematics of fluids and
{A, BY\N=1) is the Poisson bracket (@8] with N = 1. Like the Poisson bracket
0), but unlike the Poisson bracket (62)), the Poisson bracket (B6) is a sum of
three brackets, one depending only on the lower, the other only on the upper,
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and only the third on both the lower and the upper state variables. As we
have already discussed in Section E3.2] the hydrodynamic bracket {A, B}(v4)
appears in the kinematics-preserving hierarchy bracket only with the hydrody-
namic moments (85). With any other choice of the moments (e.g. if the entropy
fields s(r) is replaced by the energy field e(r) = [ dve(r,v) f(r,v), where €(r, v)
is a microscopic energy) the one particle dlstrlbutlon function f will still remain
in all terms in the Poisson bracket.

The time evolution equations (B) with the Poisson bracket (80) and energy

E(f,p,u,s) = /dre(f,p,u,s;r) = /dr/d’ue(f,p,u,s;r,v) (87)

o 0 OE;
ot or; (pEui + /dvf Ov; )

are

s D OE;
ot Or (SEW —l—/dvn 81}1)
oui 0 [ OF;
ot~ on <U1E“J+/dvf”1 an)
+63 ( /dve—l—pE + sEs +ujEy, +/dvaf>
ri
of 0 ony
& = o (B I

0 OE; 9] OEy
or; (f 0v; ) * 0v; (f or; > (88)
This kinematics-preserving hierarchy has been already derived in [85].

The disadvantage of the choice of the energy representation (i.e. the disad-
vantage of the choice of the state variables (p(r), s(7), w(r))) is that the transfor-
mation to the entropy representation with the state variables (p(7), u(r), e(r)),
that is more suitable in most applications, requires an additional assumption.
The passage (p(r),u(r),s(r)) — (p(r),u(r),e(p(r),u(r),s(r)) is one-to-one
only if gzg; > 0. The assumption that egrg > 0 is in fact a weak form of
the local equilibrium assumption. According to this assumption the quantities
s(r) and e(r) are (local) equilibrium entropy and (local) energy respectively
and consequently - E;; = T(r) > 0 is the (local) absolute (and thus positive)
temperature. We recall that when passing from one representation to another,
the gradients change as follows: Ey = —; By = —“2—“

If there is a one-to-one relation between the energy and the entropy repre-
sentations then the time evolution of the energy field e(r) is governed by

Oe 0

%~ om [PEpEy, + SEsEy, +u;Ey,; By,
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o5, OE;

B
+/ <fEfEu1+fE 4+ Ea—+fE ifﬂ (89)

We turn now to qualitative properties of solutions of (88]). A direct conse-
quence of the presence of the term {4, BY"¥% on the right hand side of the
Poisson bracket (86l (a term that does not involve f) the hierarchy (88)) is that
the hierarchy (88]) reduces to the standard nondissipative hydrodynamic equa-
tions if the energy F is chosen to be independent of f, On the other hand, if F
is chosen to depend only on f then (B8)) becomes the nondissipative one particle
kinetic equation. For a general energy E depending on both the hydrodynamic
fields and the one particle distribution function f, the kinematics-preserving
hierarchy (88) represents a Hamiltonian extended hydrodynamics in which the
one particle distribution function plays the role of an extra state variable f.
The specific physical interpretation of f is determined by the specification of
the energy E(f,g), i.e. by the role that f plays in the forces driving the time
evolution.

Having the hierarchy reformulation (88) of the kinetic equation (or other
hierarchy reformulations discussed in the previous two sections), how can we
use it to make the MaxRent passage to the hydrodynamic equations? A detail
analysis of solutions of (88]), in particular an analysis of the onset of irregulari-
ties in solutions - see e.g. [7], is expected to lead us to the upper rate entropy
T generating the dissipation that eventually, by following the dissipative time
evolution, eliminates the details expressed in f and leaves us only with equa-
tions governing the time evolution of hydrodynamic fields. An example of this
type of physical consideration, but in the context of MaxEnt not MaxRent, is
Boltzmann’s realization that the binary collisions are responsible for the onset
of irregularities of solutions of the Hamilton one particle kinetic equation and
for the emergence of dissipation in its regularized solutions. We hope to follow
this route in the future.

In this paper we only note that already the hierarchy reformulation (B8]
is useful in determining the upper rate fundamental thermodynamic relation.
The vector field JT(f;p,s,u) is read in the second terms on the right hand
side of the equations governing the time evolution of the hydrodynamic fields.
Moreover, the first two lines in the equations governing the time evolution of f
in (88) indicate also J*(p, s, u). However, we emphasize, that the passage from
([B]) to the upper rate fundamental thermodynamic relation and to a proof that
solutions to (B8) modified by supplying it with the dissipative term approach
the upper equilibrium state ¥ is left unsolved in this paper.

5.2.3 Euler kinematics-preserving hierarchy

All three examples (G3), (§I), and (BY) of kinematics-preserving hierarchies
are hierarchy reformulations of equations governing the time evolution of dis-
tribution functions. In this last illustration we present kinematics-preserving
hierarchy of the Euler hydrodynamic equation. The upper level is the level of
fluid mechanics, the upper state variable is the momentum field u(r), and the
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Poisson bracket

94, . OB,
(A, B) = / drui( B, - Auj) (90)

expresses mathematically its kinematics. The lower level state variables
W = (Wy,...,W,,) are introduced by

Wi = /drwa(r)ui(r) (91)

where (wy(7),...,w, (7)) is a given fixed set of n functions R3 — R.

In order to reformulate the Euler equation as a kinematics-preserving hier-
archy involving W (see ([@I))) as the lower level state variables, we proceed as
in the previous sections. The functions A and B in ([@0) depend on u directly
and also indirectly through the dependence on W' (that depends on u(r) - see
©I0)). We thus replace Ay and By in ([@0) with A, (r) = wa(r)Aw,,, + Ay, (r)
and with the same expression for By,. This change transforms ([@0) into

Owy,
{A,B} = /d’r [uiwﬁ O (AWaiBWBj - BWMAWBJ')

J

Qwg
+uia—7~j (Awe Bu, = Bw. Au,)

0A,, 0B,
i *Bw,, — ——Aw,.
+u wp < 67‘]‘ W 67‘]‘ WBJ>

+u; <8A“i B, — 9Bu Auj)] (92)

. Uj .
or; or;

In this Poisson bracket (as well as in the Poisson bracket ([62])) the upper state
variable u appears in all its terms. The Poisson brackets (80) and (86) involving
only the lower state variables are rather exceptional.

The time evolution equations corresponding to this bracket is the following
kinematics-preserving hierarchy

. Owg Owg
Woi = /dr {(uzwlga—m - ujwaa—n> Ew,,

8Euj Ow,,
87”1' + i 8Tj Euj:|

T e (B wwpw,) -

—UjWe

dp
where p = —e + ujwgEw,, + u;jE,, and E(u, W) = [ dre(u, W;r). The mo-
mentum field u(r) appearing in ([@3)) can be physically interpreted as an average
momentum field and W as its fine internal structure. A possible suitability of
this reformulation of the Euler equation for, for example, turbulence modeling
or numerical investigations is intended to be explored in a future paper.
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6 Concluding Remarks

Multiscale thermodynamics is a theory of relations among levels of investigation
of complex systems. It is a theory that sprung from the classical equilibrium
thermodynamics, Boltzmann’s kinetic theory and the Gibbs equilibrium statis-
tical mechanics. A level is well established if its predictions agree with results of
experimental observations. A level £ is an upper level vis-a-vis another level [
if £ includes more details than I If both levels £ and [ are well established then
there must exist a way to prepare the systems under investigation for the level [
and the preparation process has to be possible to see as a time evolution on the
level £ The entropy appearing in the vector field governing such time evolution
plays on the level £ the role of an ambassador of the lower level I. During the
time evolution the entropy is maximized subjected to certain constraints that,
as well as the entropy, represent the lower level [ inside the upper level £. The
time evolution in £ leading to [ is a sequence of infinitesimal contact-structure-
preserving transformations and the whole process of passing from the level £ to
the level [ is a reducing Legendre transformation. Multiscale thermodynamics
investigates the chain — £ — £ — [ —, where £ is a level that involves
more details that both the level £ and L

In this paper we first present the main tenets of the multiscale thermody-
namics (in Sections Pl and B]) and then in Section @] we show its realizations in
the setting of classical theories like the Boltzmann kinetic theory, Gibbs equi-
librium statistical mechanics, and fluid mechanics. Dynamic and static theories
on a wide range of scales become particular realizations of a single abstract the-
ory applicable to externally and internally unforced and forced complex systems
with no limitations regarding the closeness to equilibrium. In Section[l we turn
the multiscale thermodynamics towards a new path in hierarchy reformulations
of dynamical theories. Our objective is to formulate hierarchies that preserve
kinematics. In both the classical and the newly explored theories the multiscale
thermodynamics inspires novel insights and viewpoints.
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